
Principal-Centric Reasoning in
Constructive Authorization Logic

Deepak Garg

April 14, 2009
CMU-CS-09-120

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

e-mail: dg@cs.cmu.edu

Abstract

We present an authorization logic DTL0 that explicitly relativizes reasoning to beliefs
of principals. The logic assumes that principals are conceited in their beliefs. We
describe the natural deduction system, sequent calculus, Hilbert-style axiomatization,
and Kripke semantics of the logic. We prove several meta-theoretic results including
cut-elimination, and soundness and completeness for the Kripke semantics. Translations
from several other authorization logics into DTL0, as well as formal connections between
DTL0 and the modal logic constructive S4 are also presented. Finally, a related logic
BL0 is considered and its properties are studied.

This work was partly supported by the Air Force Research Laboratory under grant no.
FA87500720028.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
14 APR 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Principal-Centric Reasoning in Constructive Authorization Logic

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

125

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: Authorization Logic, Intuitionistic Modal Logic, Logical Translation

1 Introduction

Authorization refers to the act of deciding whether or not an agent making a request
to perform an operation on a resource should be allowed to do so. For example, the
agent may be a browser trying to read pages from a website. In that case, the site’s web
server may consult the browser’s credentials and a .htaccess file to determine whether
to send the pages or not. Such access control is pervasive in computer systems. As
systems and their user environments evolve, policies used for access control may become
complex and error prone. This suggests the need for formal mechanisms to represent,
enforce, and analyze policies. Logic appears to be a useful mechanism for these purposes.
Policies may be expressed as formulas in a suitably chosen logic. This has several merits.
First, the logic’s rigorous inference eliminates any ambiguity that may be inherent in
a textual description of policies. Second, policies may be enforced end-to-end using
generic logic-based mechanisms like proof-carrying authorization [8–10, 40]. Third, by
writing policies in a logic, there is hope that the policies themselves can be checked for
correctness against some given criteria (see e.g., [3, 33, 42, 44]).

Whereas first-order logic and sometimes propositional logic suffice to express many
authorization policies, decentralized systems pose a peculiar challenge: how do we ex-
press and combine policies of different agents and systems? This is often necessary
since policies and the authorizations derived from them may vary from system to sys-
tem. Policies of different users, programs, and systems may also interact to allow or
deny access. To model such decentralized policies, Abadi and others proposed logics
with formulas of the form K says A, where K is an agent or a system (abstractly called
a principal) and A is a formula representing a policy [6, 39]. The intended meaning of
the formula is that principal K states, or believes that policy A holds. From a logical
perspective K says · is a modality and the logic is an indexed modal logic with one
modality for each principal. We call such a modal logic an authorization logic. In the
past fifteen years there have been numerous proposals describing authorization logics
that differ widely in the specific axioms (or inference rules) used for K says · [2, 3, 8–
10, 21, 23, 25, 31–33, 40, 41]. One emerging trend is the increased use of intuitionistic
logics for authorization (e.g., [3, 25, 29, 31–33, 40, 50]) as opposed to classical logics.

This paper presents a new intuitionistic authorization logic called DTL0. This logic
is peculiar in a certain respect: it abandons the usual objectivity in reasoning from
hypothesis, relativizing hypothetical reasoning to principals. The hypothetical judgment
of the logic has the form Γ K−→ A, which means, up to a first approximation, that principal
K may reason from hypothesis Γ that A is true. While principal K reasons, K says A
implies A for each A, thus making all policies local to K available. This may not be
true when another principal K ′ reasons. Reasoning of different principals may interact
through the says connective. Although this choice of binding hypothetical reasoning to
principals may be unintuitive from a philosophical point of view, it seems quite apt for
reasoning about authorization policies.

Our primary interest in developing DTL0 is deployment in proof-carrying authoriza-
tion [8–10, 40]. Hence our main focus is DTL0’s proof-theory, especially a natural deduc-
tion system (with proof-terms) and a sequent calculus, which we describe in detail. We
prove several meta-theoretic properties of both formulations, including cut-elimination
for the sequent calculus. We also present a Hilbert-style proof system for DTL0, and

1

sound and complete Kripke semantics. The principal-centric reasoning of DTL0 reflects
in the Kripke semantics: worlds are explicitly associated with principals who may view
them. This suggests that principals in DTL0 may be related to nominals from hybrid
logic [15, 20, 22]. We also show that DTL0 is a generalization of constructive modal
S4 [7, 46], and describe a sound and complete translation from DTL0 to multi-modal
constructive S4.

Besides investigating the theory of DTL0, a second goal of this paper is to understand
how the logic relates to existing authorization logics, and to the numerous logic-based
languages for writing authorization policies (e.g., [11, 24, 37, 47]). In this regard we
present simple, syntax directed translations from several families of authorization logics
and an authorization language to DTL0, thus showing that DTL0 is at least as expressive
as each of them. These translations are part of a more ambitious effort to establish a
common framework in which policies written in different logics and languages may be
combined. Some initial work in this direction using modal S4 as foundation may be
found in earlier work [31].

DTL0 is a fragment of a larger authorization logic, DTL, which we are currently
developing. The latter is quite broad, incorporating first-order quantifiers, explicit time
for modeling time-bounded policies [25], and linearity for modeling consumable creden-
tials [19, 21, 32]. Detailed investigation of these constructs is the subject of ongoing
work. Besides these, there are some other aspects of authorization logics such as com-
pound principals and delegation [6, 31, 39] which we also plan to investigate in the
future. On a more practical note, we are implementing a file system with proof-carrying
authorization based on DTL. We also plan to develop policy analysis tools using DTL.

By itself, this paper makes three main contributions. First, it presents the logic
DTL0, investigating in detail its proof-theory (Sections 2 and 3). Second, it presents
simple, intuitive translations from several existing policy formalisms to DTL0, thus tak-
ing a step towards a common foundation for combining policies represented in different
formalisms (Section 5). A third, albeit minor contribution of the paper is sound and
complete Kripke semantics (Section 4), which are relatively rare for authorization log-
ics; the only other examples we know of are semantics for lax-like modalities [31], and
those for an earlier logic based on the modal logic K [6]. We omit a description of large
examples from this paper, leaving them to a separate paper.

2 The logic DTL0

DTL0 extends propositional intuitionistic logic with a principal-indexed modality, K says
A. Principals, denoted K, are abstractions for users, programs, machines, and systems,
that either create policies or request access to resources. We stipulate a fixed set of
principals Prin, pre-ordered by a relation written �. K1 � K2 is read “principal K1

is stronger than principal K2”, and entails that K1 says A implies K2 says A for every
formula A. We assume that Prin has at least one maximum element, called the local
authority (denoted `).1 The syntax of formulas in DTL0 is shown below. P denotes

1To the best of our understanding, the term local authority as used here was first introduced in the
preview implementation of the language SecPAL [1].

2

atomic formulas.

A,B,C ::= P | A ∧ B | A ∨ B | > | ⊥ | A ⊃ B | K says A

Axiomatic Proof-System. A Hilbert-style proof-system for DTL0 consists of any
axiomatization of propositional intuitionistic logic (see Appendix C for one possibility),
and the following rules and axioms for K says A. We write `H A to mean that A is
provable without assumptions (i.e., that A is a tautology).

`H A

`H K says A
(nec)

`H (K says (A ⊃ B)) ⊃ ((K says A) ⊃ (K says B)) (K)
`H (K says A) ⊃ K says K says A (4)
`H K says ((K says A) ⊃ A) (C)
`H (K1 says A) ⊃ (K2 says A) if K1 � K2. (S)

(nec) and (K) are the usual necessitation rule and closure under consequence axiom for
normal modal logics (see e.g., [14]). (4) is also standard from modal logics such as
S4. (C) is the characterizing axiom of DTL0. It has been used to characterize conceited
reasoners in doxastic logic (hence the name C) [48]. Intuitively, the axiom means that
every principal says that all its statements are true. Although the propriety of this axiom
in the context of doxastic reasoning has been questioned (e.g., [48]), it seems quite useful
for authorization. The axiom (S) means that whenever principal K1 believes a formula
A, every weaker principal K2 believes it as well.

The following properties may be established in DTL0. 6`H A means that A is not
valid in the stated generality (although specific instances of A may be valid). A ≡ B
denotes (A ⊃ B) ∧ (B ⊃ A).

`H (` says A) ⊃ (K says A)

`H (K says K says A) ≡ (K says A)

6`H A ⊃ K says A

6`H (K says A) ⊃ A

`H (K says (A ∧ B)) ≡ ((K says A) ∧ (K says B))

6`H (K says (A ∨ B)) ⊃ ((K says A) ∨ (K says B))

6`H ⊥

6`H (K says A) ⊃ (K ′ says K says A)

Defined Connectives. The last property above means that if K says A, not every
principal K ′ may believe this. In some cases, this may not be desirable, since some
policies may be stated and published by K and in these cases we may expect that
K ′ says K says A. In particular, if K issues a credential containing a policy, we may
want that the policy be believed by all principals. Further, there may some policies

3

that are believed by all principals. To model such published and shared policies, we
introduce two defined connectives in the logic. The first connective, global A, implies
K says A for each principal K, and may be understood as the statement that A is a
common belief of all principals. The second connective, K publ A (read K publishes A)
implies K ′ says K says A for each K ′, and intuitively means that K publishes the fact
that it believes A. We define,

global A
def= ` says A

K publ A
def= global (K says A)

It is easy to check that the following hold.

`H (global A) ⊃ K says A

`H (global A) ⊃ K publ A

`H (K publ A) ⊃ K says A

`H (K publ A) ⊃ K ′ says (K says A)

6`H (K says A) ⊃ K publ A

Example 2.1 (Policies in DTL0). We illustrate the use of DTL0 for expressing autho-
rization policies through a simple example. Suppose that the principal OAL (Online
Academic Library) represents an online repository of scientific articles. Academics in-
stitutions (such as CMU) may buy corporate subscriptions that allow all their members
to download articles from OAL. It is up to the subscribing institutions to tell OAL
who their members are. Alice is an individual who wishes to download an article from
OAL. Let the formula downloadAlice mean that Alice may download articles from OAL,
and let memberAliceCMU mean that Alice is a member of CMU. Further, let us assume
that CMU has a subscription at OAL. The following represent possible policies of the
principals.

1. OAL says ((CMU says memberAliceCMU) ⊃ memberAliceCMU)

2. OAL says (memberAliceCMU ⊃ downloadAlice)

3. CMU publ memberAliceCMU

The first policy, stated by OAL, means that if CMU says that Alice is its member, then
this is the case. The second policy, also stated by OAL, means that if Alice is a member
of CMU, then she may download articles. The third policy, stated and published by
CMU, means that Alice is a member of CMU. It is easy to check that these three policies
entail the formula OAL says downloadAlice in DTL0, and that this would not be the
case if we changed publ to says in the last policy.

4

3 Structural Proof Theory

Next we develop the structural proof theory of DTL0, namely a natural deduction system
and a sequent calculus. Besides explaining the meanings of connectives precisely, the
natural deduction formulation provides a syntax for proof terms that are a basis for
proof-carrying authorization (our intended deployment for DTL0). The sequent calculus
is necessary to prove some of the theorems in later sections. We also expect that the
sequent calculus will be useful in proof-construction, which is also essential for proof-
carrying authorization.

We follow Martin-Löf’s judgmental method in developing the structural proof theory,
and maintain a strong distinction between formulas and judgments [43]. The presen-
tation of the natural deduction system is more directly based on Pfenning and Davies’
work on constructive S4 [46], whereas the presentation of the sequent calculus is inspired
by previous work of the author and others on multi-modal S4, also done in the context
of access control [32]. In Section 3.6 we show that the natural deduction system, the
sequent calculus, and the axiomatic system described earlier are equivalent.

3.1 Natural Deduction

In Martin-Löf’s approach to type-theory and logic, formulas are distinguished from judg-
ments. The latter are the objects of knowledge that may be established through proofs.
Formulas are the subjects of judgments. For DTL0, we use two basic (categorical) judg-
ments: A true, meaning that formula A is true, and K claims A, meaning that principal
K believes or claims that formula A is true. The two categorical judgments do not entail
each other in general. We often abbreviate A true to A, if it is clear from context that
we mean the judgment A true and not the formula A.

Of course, in order to represent policies, it is necessary to combine claims of prin-
cipals using connectives. Since judgments are distinct from formulas, and connectives
only apply to the latter, we cannot use the judgment K claims A directly for in such
representations. Accordingly, we internalize the judgment K claims A into the syntax
of formulas as K says A. In other words the judgments (K says A) true and K claims A
are equivalent. Since K says A is a formula, it may be combined with other connectives.

Hypothetical Judgments

Reasoning from hypothesis or assumptions is a basic tenet of logic. Logics invariably
allow hypothetical judgments of the form Γ ` A, meaning that the assumptions in Γ
entail formula A. A distinguishing characteristic of DTL0 is that hypothetical reasoning
is always performed relative to the beliefs of a principal K, which we indicate in the
hypothetical judgment; we write Γ `K A.2 Formally, K is called the context of the
hypothetical judgment, or the context of reasoning. The hypothesis are a (possibly
empty) multiset of categorical judgments:

Γ ::= · | Γ, C true | Γ,K ′ claims C

Reasoning in DTL0 is guided by three basic principles. The first principle, called the
context principle, describes how the context K affects reasoning.

2A represents the judgment A true, not the formula A, but we usually elide the judgment name true.

5

Context principle. While reasoning in context K, the assumption
K ′ claims A entails A true if K ′ � K.

We incorporate this principle into the natural deduction system by the following rule of
inference.

K ′ � K
Γ,K ′ claims A `K A

claims

Based on the context principle, we may define the meaning of the hypothetical judgment
Γ `K A precisely as follows:

“Assuming that beliefs of principals stronger than K are true, the hy-
pothesis Γ logically entail that A is true”.

Although this choice of relativizing hypothetical judgments to beliefs of principals is
non-standard, it seems quite useful from the perspective of access control, where an au-
thorization may succeed or fail, depending on the policies applicable in the surrounding
context.

Our second guiding principle, called the substitution principle, elaborates the mean-
ing of hypothesis. It states that a hypothesis A true used in a proof may be substituted
by an actual proof of the hypothesis.

Substitution principle. Γ `K A and Γ, A `K C imply Γ `K C

Unlike the context principle which is incorporated directly as a rule in the natural
deduction system, the substitution principle is established as a theorem.

Our third guiding principle, called the claim principle, defines the relation between
the judgments K claims A and A true. Informally it states that K claims A holds if
we can establish A true in context K from the claims of principals stronger than K.
Formally, we define an operator Γ|K that restricts the hypothesis Γ to the claims of
principals stronger than K.

Γ|K = {(K ′ claims C) ∈ Γ | K ′ � K}

The claim principle may then be written as follows.

Claim principle. Γ|K `K A and Γ,K claims A `K′
C imply Γ `K′

C.

Like the substitution principle, the claim principle is admissible as a theorem in the
natural deduction system. In fact, we prove the two principles simultaneously in a
single theorem (Theorem 3.2).

Inference Rules

The inference rules of the natural deduction system are summarized in Figure 1. The
most basic inference rule is (hyp). It means that if A true is a hypothesis, then A must
be true.

Γ, A `K A
hyp

The rule (claims) captures the context principle as described earlier. The remaining rules
are directed by the connectives of DTL0. For each connective, there are introduction

6

Γ, A `K A
hyp

K ′ � K
Γ,K ′ claims A `K A

claims

Γ|K `K A

Γ `K
′
K says A

saysI
Γ `K

′
K says A Γ,K claims A `K

′
C

Γ `K
′
C

saysE

Γ `K A Γ `K B

Γ `K A ∧ B
∧I

Γ `K A ∧ B
Γ `K A

∧ E1

Γ `K A ∧ B
Γ `K B

∧ E2

Γ `K A

Γ `K A ∨ B
∨ I1

Γ `K B

Γ `K A ∨ B
∨ I2

Γ `K A ∨ B Γ, A `K C Γ, B `K C

Γ `K C
∨ E

Γ `K >
>I

Γ `K ⊥
Γ `K C

⊥E
Γ, A `K B

Γ `K A ⊃ B
⊃I

Γ `K A ⊃ B Γ `K A

Γ `K B
⊃E

Figure 1: Natural Deduction for DTL0

rules (marked I) that specify how a proof of the connective may be constructed directly,
and elimination rules (marked E) that specify how a proof of the connective may be
used. In the following we describe briefly the rules for says.

How can we establish (K says A) true? Since (K says A) true is equivalent to
K claims A, the claim principle tells us that (K says A) true may be established if we
can establish A true in context K using assumptions of principals stronger than K. This
is exactly what the rule (saysI) captures:

Γ|K `K A

Γ `K′
K says A

saysI

Dually, how can we use the fact (K says A) true? Again, since (K says A) true and
K claims A are equivalent, from the fact (K says A) true, we should be able to assume
K claims A. This is captured by the elimination rule (saysE):

Γ `K′
K says A Γ,K claims A `K′

C

Γ,`K′
C

saysE

Rules for the connectives ∧, ∨, >, ⊥, and ⊃ are standard, with the exception that there
is a context associated with each hypothetical judgment. We elide a description of these
standard rules.

3.2 Meta-Theory of the Natural Deduction System

Having seen all the rules of the natural deduction system, we now seek to prove that
the substitution and context principles are admissible in DTL0. Before doing that, we
establish another fundamental property called subsumption that is needed to complete
the proof. Subsumption states that weaker contexts make more formulas provable.
Intuitively, this follows from the definition of hypothetical judgments.

7

Theorem 3.1 (Subsumption). K � K ′ and Γ `K A imply Γ `K′
A.

Proof. By induction on the derivation of Γ `K A.

The following theorem formally states that both the substitution and claim principles
hold.

Theorem 3.2 (Substitution and Claim). The following hold.

1. Γ `K A and Γ, A true `K C imply Γ `K C.

2. Γ|K `K A and Γ,K claims A `K′
C imply Γ `K′

C.

Proof. By simultaneous induction on the second given derivations. In the case of (2),
rule (claims) we use Theorem 3.1.

3.3 Proof Terms

The natural deduction system described above may be augmented with proof terms in
the usual way. We use standard notation from the λ calculus for denoting most parts of
proof terms; new notation is introduced only for the introduction and elimination forms
of says. The syntax of proof terms is summarized below. x, y denote variables.

t ::= x | λx.t | t1 t2 | 〈t1, t2〉 | proj1 t | proj2 t | 〈〉 | abort t
inl t | inr t | case(t, x.t1, y.t2) | {t}K | t1⇒x.t2

The constructors {t}K and t1⇒x.t2 are the introduction and elimination forms forK says
A. The variables x, y in λx.t, case(t, x.t1, y.t2), and t1⇒x.t2 are bound. We identify
terms up to α-renaming of such bound variables.

Figure 2 shows the modified inference rules with proof terms. As usual, we name
all assumptions in Γ by associating unique variables with them. We do not need to
syntactically distinguish between variables associated with assumptions A true and those
associated with assumptions K claims A. Hypothetical judgments are augmented with
proof terms; they take the form Γ `K t : A. The definition of Γ|K is lifted to include
variables: Γ|K = {(x : K ′ claims C) ∈ Γ | K ′ � K}.

Once again, we can prove a subsumption principle:

Theorem 3.3 (Subsumption). K � K ′ and Γ `K t : A imply Γ `K′
t : A.

Proof. By induction on the derivation of Γ `K t : A.

Let [t1/x]t2 denote the capture avoiding substitution of t1 for all occurrences of x
in t2. (We elide the obvious definition.) The substitution and claim principles (Theo-
rem 3.2) may be modified, obtaining the following new principles.

Theorem 3.4 (Substitution and Claim). The following hold.

1. Γ `K t1 : A and Γ, x : A true `K t2 : C imply Γ `K [t1/x]t2 : C.

2. Γ|K `K t1 : A and Γ, x : K claims A `K′
t2 : C imply Γ `K′

[t1/x]t2 : C.

Proof. By simultaneous induction on the second given derivations.

8

Γ, x : A `K x : A
hyp

K ′ � K
Γ, x : K ′ claims A `K x : A

claims

Γ|K `K t : A

Γ `K
′
{t}K : K says A

saysI
Γ `K

′
t1 : K says A Γ, x : K claims A `K

′
t2 : C

Γ `K
′
t1⇒x.t2 : C

saysE

Γ `K t1 : A Γ `K t2 : B

Γ `K 〈t1, t2〉 : A ∧ B
∧I

Γ `K t : A ∧ B
Γ `Kproj1 t : A

∧ E1

Γ `K t : A ∧ B
Γ `Kproj2 t : B

∧ E2

Γ `K t : A

Γ `Kinl t : A ∨ B
∨ I1

Γ `K t : B

Γ `Kinr t : A ∨ B
∨ I2

Γ `K t : A ∨ B Γ, x : A `K t1 : C Γ, y : B `K t2 : C

Γ `K case(t, x.t1, y.t2) : C
∨ E

Γ `K 〈〉 : >
>I

Γ `K t : ⊥
Γ `Kabort t : C

⊥E

Γ, x : A `K t : B

Γ `K λx.t : A ⊃ B
⊃I

Γ `K t1 : A ⊃ B Γ `K t2 : A

Γ `K t1 t2 : B
⊃E

Figure 2: Proof terms for DTL0

Local Reduction and Local Expansion

Pfenning and Davies proposed two general principles to verify that the inference rules
in a natural deduction system fit well with each other [46]. They called these principles
local soundness and local completeness. In the following we present these principles for
DTL0 with proof terms. Analogous principles may also be obtained at the level of proofs
instead of proof terms.

Briefly, local soundness states that if the introduction of a connective is immediately
followed by its elimination in a proof, then it should be possible to locally reduce the
proof by eliminating this detour. Local soundness for a connective guarantees that the
elimination rule(s) for the connective are not too strong, i.e., they do not conclude
any formula that would not already follow from the inputs to the introduction rule(s)
of the connective. The dual principle, local completeness, states that given any proof
of a formula, it should be possible to locally expand the proof by eliminating its top
level connective and re-introducing it, obtaining a bigger proof of the original formula.
Local completeness for a connective guarantees that its elimination rule(s) are strong
enough to conclude everything that is needed to re-constitute a proof of the connective
from its introduction rule(s). Together the two principles provide assurance that the
introduction and elimination rules are in harmony with each other.

Under the Curry-Howard isomorphism, local reduction and local expansion corre-
spond to the familiar concepts of β-reduction and η-expansion, respectively. We present
type-directed variants of β-reduction and η-expansion for DTL0 in Figure 3. In addition

9

β-reduction

Γ `K t1 : A Γ `K t2 : B

Γ `Kproj1 〈t1, t2〉 β t1 : A

Γ `K t1 : A Γ `K t2 : B

Γ `Kproj2 〈t1, t2〉 β t2 : B

Γ `K t : A Γ, x : A `K t1 : C Γ, y : B `K t2 : C

Γ `K case(inl t, x.t1, y.t2) β [t/x]t1 : C

Γ `K t : B Γ, x : A `K t1 : C Γ, y : B `K t2 : C

Γ `K case(inr t, x.t1, y.t2) β [t/y]t2 : C

Γ, x : A `K t1 : B Γ `K t2 : A

Γ `K (λx.t1) t2 β [t2/x]t1 : B

Γ|K `K t1 : A Γ, x : K claims A `K
′
t2 : C

Γ `K
′

({t1}K⇒x.t2) β [t1/x]t2 : C

η-expansion

Γ `K t : A ∧ B
Γ `K t η 〈proj1 t, proj2 t〉 : A ∧ B

Γ `K t : A ∨ B
Γ `K t η case(t, x. inl x, y. inr y) : A ∨ B

Γ `K t : >
Γ `K t η 〈〉 : >

Γ `K t : ⊥
Γ `K t η abort t

Γ `K t : A ⊃ B
Γ `K t η λx.(t x) : A ⊃ B

(x 6∈ Γ)
Γ `K

′
t : K says A

Γ `K
′
t η (t⇒x.{x}K) : K says A

Figure 3: Basic rules for β-reduction and η-expansion

to these rules, there are a number of congruence rules, which we list in Appendix A.
Our β-reduction and η-expansion rules are somewhat unusual since they include type
information, and apply only to well-typed terms. For example, β-reduction has the form
Γ `K t β t

′ : A, meaning that the proof term t (proving A true under hypothesis Γ
in context K) β-reduces to t′. We prove separately (see Theorem 3.5 below) that if
Γ `K t β t′ : A, then Γ `K t : A and Γ `K t′ : A. This theorem subsumes the
usual type-preservation or subject reduction theorem. The treatment of η-expansion
is similar. It is easy to see that on well-typed terms without the constructors {t}K
and t1⇒x.t2 our definitions of β-reduction and η-expansion coincide with conventional
(untyped) definitions.

Theorem 3.5 (Typing). For ∈ { β, η}, if Γ `K t t′ : A then,

1. Γ `K t : A

2. Γ `K t′ : A

Proof. In each case by induction on the given derivation of Γ `K t t′ : A.

10

P atomic

Γ, P K−→ P
init

Γ,K claims A,A
K′

−−→ C K � K ′

Γ,K claims A
K′

−−→ C
claims

Γ|K
K−→ A

Γ K′

−−→ K says A
saysR

Γ,K says A,K claims A
K′

−−→ C

Γ,K says A
K′

−−→ C
saysL

Γ K−→ A Γ K−→ B

Γ K−→ A ∧ B
∧R

Γ, A ∧ B,A,B K−→ C

Γ, A ∧ B K−→ C
∧L

Γ K−→ A

Γ K−→ A ∨ B
∨ R1

Γ K−→ B

Γ K−→ A ∨ B
∨ R2

Γ, A ∨ B,A K−→ C Γ, A ∨ B,B K−→ C

Γ, A ∨ B K−→ C
∨ L

Γ K−→ >
>R

Γ,⊥ K−→ C
⊥L

Γ, A K−→ B

Γ K−→ A ⊃ B
⊃R

Γ, A ⊃ B K−→ A Γ, A ⊃ B,B K−→ C

Γ, A ⊃ B K−→ C
⊃L

Figure 4: Sequent calculus for DTL0

3.4 Sequent Calculus

Next, we describe a sequent calculus for DTL0. As in the natural deduction system, we
maintain a distinction between formulas and judgments. The categorical and hypotheti-
cal judgments used in the sequent calculus are the same as those in the natural deduction
system. To avoid confusion with the natural deduction system, we write hypothetical
judgments in the sequent calculus as Γ K−→ A, and call them sequents.3 The inference
rules of the sequent calculus are shown in Figure 4. With the exception of (init) and
(claims), all rules are directed by the connectives of DTL0. For each connective we have
right rules which describe how the connective may be inferred as the conclusion of the
sequent, and left rules which specify how the connective may be used as a hypothesis.

Rule (init) states that if we assume that an atomic formula P is true, then in any
context K we may conclude that P is true. For non-atomic formulas, we prove a
corresponding result as a theorem (see Theorem 3.8). The rules (claims), (saysR), and
(saysL) characterize DTL0. Read from the conclusion to the premises, rule (claims)
states that whenever we assume K claims A, we are also justified in assuming that A is
true, if we are reasoning in a context K ′ such that K � K ′. This captures the context
principle described earlier.

Rule (saysR) is analogous to the rule (saysI) from the natural deduction system and
means that K says A may be established in any context if we can prove in context K

3Technically, in the sequent calculus there is a distinction between hypothesis A true and conclusions
A true; they are distinct categorical judgments. However, this distinction is always evident from the
positions of the judgments in sequents, and we avoid separating the two in syntax.

11

that A is true using only the claims of principals stronger than K. Rule (saysL) captures
the idea that K says A internalizes K claims A: if we assume that K says A is true, then
we may also assume K claims A. The rules for the connectives ∧, ∨, >, ⊥, and ⊃ are
standard, except for a context which is associated with each sequent.

3.5 Meta-Theory of the Sequent Calculus

The sequent calculus described above enjoys several meta-theoretic properties. For
example, it is evident from the rules in Figure 4 that the sequent calculus enjoys the
subformula property, i.e., any formula occurring in the proof of a sequent must occur
inside the formulas of the sequent. Several structural properties such as weakening also
hold in the sequent calculus. As for the natural deduction system, we may also establish
a subsumption principle for the sequent calculus.

Theorem 3.6 (Subsumption). Γ K−→ A and K � K ′ imply Γ K′
−−→ A.

Proof. By induction on the given derivation of Γ K−→ A. See Appendix B for details.

A very important property of the sequent calculus is cut-elimination [35]. This prop-
erty is analogous to the substitution principle and the claim principle; formally it states
that adding a cut rule to a sequent calculus does not make more judgments provable.
More generally, it implies that all (natural deduction) proofs can be normalized. Besides
providing assurance of the logic’s strong foundation, proof normalization is sometimes
useful for auditing proofs. Instead of stating explicitly the rules of cut for our sequent
calculus and showing that they may be eliminated, we prove the following theorem which
states that cut principles analogous to the substitution principle and the claim principle
are admissible in the sequent calculus.

Theorem 3.7 (Admissibility of Cut). The following cut principles hold for the sequent
calculus of Figure 4.

1. Γ K−→ A and Γ, A K−→ C imply that Γ K−→ C.

2. Γ|K
K−→ A and Γ,K claims A

K′
−−→ C imply that Γ K′

−−→ C.

Proof. Both statements can be proved simultaneously by lexicographic induction, first
on the size of the cut judgments (A true or K claims A), and then on the size of the two
given derivations, as in earlier work [45]. See Appendix B for details.

The logical dual of the cut-elimination theorem is the following identity theorem,
which states that whenever A true is assumed as a hypothesis, we may conclude it. This
generalizes the (init) rule from atomic to arbitrary formulas.

Theorem 3.8 (Identity). For each formula A, Γ, A K−→ A.

Proof. By induction on A. See Appendix B for details.

12

3.6 Equivalence

An obvious question is whether the axiomatic system, natural deduction system, and
sequent calculus presented for DTL0 validate the same judgments. The following theo-
rem shows that the natural deduction system and sequent calculus validate exactly the
same judgments, and that they can be embedded trivially into the axiomatic system.

Theorem 3.9 (Equivalence). The following are equivalent for any K and A.

1. · `K A in the natural deduction system.

2. · K−→ A in the sequent calculus.

3. `H K says A in the axiomatic system.

Proof. See Appendix C.

Observe that there is no equivalent of `H B in the sequent calculus (or natural
deduction system) unless B has the form K says A. In this sense, the above theorem
actually embeds the sequent calculus into the axiomatic system. While it is possible
to recover the entire axiomatic system in the sequent calculus by adding non-indexed
hypothetical judgments Γ −→ A, this extension seems uninteresting for authorization
policies, and we omit it.

4 Kripke Semantics for DTL0

Next we describe sound and complete Kripke semantics for DTL0. Although not directly
applicable to policies, Kripke semantics are an invaluable tool for proving properties of
the logic (e.g., [4, 31]). There is also hope that Kripke countermodels can be used as
proofs of failure, in case an authorization does not succeed. Our presentation of Kripke
semantics is inspired by work on the modal logic constructive S4 [7], and also uses some
ideas from work on Kripke semantics of lax logic [27, 31].

The distinguishing characteristic of our Kripke semantics are views [31]. With each
world w, we associate a set of principals θ(w) to whom the world is said to be visible.
Our correctness property is that · K−→ A if and only if each world visible to K satisfies
A.4 In this manner, views allow us to distinguish reasoning in one context from that in
another. If K � K ′ then we require that any world visible to K ′ also be visible to K.
This ensures that context K validates fewer formulas than context K ′, and captures the
subsumption principle (Theorem 3.6).

We model falsehood by explicitly specifying in each frame a set F of worlds where ⊥
holds. These worlds are called fallible worlds [26, 27, 49]. We say that w |= ⊥ iff w ∈ F .
To model intuitionistic implication, we use a pre-order ≤ between worlds (as usual) and
say that w |= A ⊃ B iff for all w′, w ≤ w′ and w′ |= A imply w′ |= B. Finally, to model
the modality says, we use a principal-indexed binary relation vK between worlds and
define:

4Throughout this section and the next, we use the sequent calculus of DTL0 to state correctness
properties. Use of the sequent calculus as opposed to the natural deduction system or the axiomatic
system is partly a matter of personal taste and partly a matter of technical convenience.

13

w |= K says A iff either w ∈ F or for all w′, w′′, w ≤ w′ vK w′′ implies w′′ |= A.

The clause w ∈ F in the above definition is required to validate ⊥ ⊃ K says A. The
remaining definition is a generalization of satisfaction for �A from Kripke semantics of
constructive S4 [7]. To validate axiom (4), we stipulate that vK ;≤ be a subset of vK .

Both the use of a pre-order to model intuitionistic implication, and the use of different
binary relations to model each modality are standard in modal logic. The novelty here
is the interaction of these relations with views. We require that ≤ preserve views, i.e.,
if w ≤ w′ and w be visible to K, then w′ also be visible to K. We also require that
whenever w vK w′, w′ be visible to K. For example, in the definition of w |= K says A
above, w′′ would be visible to K. By forcing these restrictions, we ensure that the
semantics of all connectives except K says · can be defined without changing views. On
the other hand, the semantics of K says · shift the reasoning to worlds that are visible
to K. This subtle interaction between views and binary relations captures the exact
meaning of formulas in DTL0.

Definition 4.1 (Kripke Models). A Kripke model M for DTL0 is a tuple
(W, θ,≤, (vK)K∈Prin, ρ, F), where

- W is a non-empty set of worlds (worlds are denoted w).

- θ : W 7→ 2Prin is a view function that maps each world w to a set of principals. If
K ∈ θ(w), we say that w is visible to K, else w is said to be invisible to K. We
often write WK for the set {w ∈W | K ∈ θ(w)}. We require that:

(View-closure) K ∈ θ(w) and K ′ � K imply K ′ ∈ θ(w).

- ≤ is a pre-order on W called the implication relation. We require that:

(Imp-mon) w ≤ w′ imply θ(w) ⊆ θ(w′).

- For each K, vK is a subset of W ×WK called the modality relation. We require
that:

(Mod-refl) If w ∈WK , then w vK w.

(Mod-trans) vK be transitive.

(Mod-closure) w vK w′ and K ′ � K imply w vK′ w′

(Commutativity) If w vK w′ ≤ w′′, then w vK w′′.

- ρ : W 7→ 2AtomicFormulas is a valuation function that maps each world to the set of
atomic formulas that hold in it. We require that:

(Rho-her) P ∈ ρ(w) and w ≤ w′ imply P ∈ ρ(w′).

- F ⊆W is the set of fallible worlds. We require that:

(F-her) w ∈ F and w ≤ w′ imply w′ ∈ F .

(F-univ) w ∈ F imply P ∈ ρ(w)

14

Definition 4.2 (Satisfaction). Given a model M = (W, θ,≤, (vK)K∈Prin, ρ, F), and a
world w ∈ W , the satisfaction relation w |= A (world w satisfies formula A) is defined
by induction on A as follows.

w |= P iff P ∈ ρ(w).

w |= A ∧ B iff w |= A and w |= B.

w |= A ∨ B iff w |= A or w |= B.

w |= >.

w |= ⊥ iff w ∈ F .

w |= A ⊃ B iff for all w′, w ≤ w′ and w′ |= A imply w′ |= B.

w |= K says A iff either w ∈ F or for all w′, w′′, w ≤ w′ vK w′′ implies w′′ |= A.

We say that a principal K validates A in model M (written M |=K A) if for each
world w ∈ WK in M , it is the case that w |= A. The Kripke semantics defined above
are sound and complete in the following sense.

Theorem 4.3 (Soundness and Completeness). · K−→ A in the sequent calculus if and
only if for each Kripke model M , M |=K A.

Soundness (“only if” direction) follows by an induction on the given sequent calculus
proof. We must generalize the statement a little to allow non-empty hypotheses. See
Appendix D.1 for details. The proof of completeness (“if” direction) uses a canonical
model construction, which we describe next.

4.1 Canonical Kripke Model and Completeness

We describe a canonical Kripke model for DTL0 that satisfies the following property:
for each K and A, if · 6 K−→ A, then there is a world w ∈ WK such that w 6|= A. From
this property, it follows immediately that satisfaction in Kripke models is complete
with respect to the sequent calculus in the sense of Theorem 4.3. Our construction
of the canonical model generalizes Alechina et al’s construction of canonical models
for constructive S4 [7]. Before defining the canonical Kripke model, we make some
preliminary definitions.

Definition 4.4 (Theory). A theory is a tuple (Γ, S), where Γ is a set of formulas, and
S is a set of principals.

Definition 4.5 (Filter). A set S of principals is called a filter if there exists a principal
K such that S = {K ′ | K ′ � K}. Note that by definition, a filter always has a minimum
element (K), and a maximum element (`). In particular, a filter can never be the empty
set.

Definition 4.6 (Prime Theory). We call a theory (Γ, S) prime if the following hold:

1. (Prin-closure) S is a filter.

2. (Fact-closure) Γ is closed under K−→ for each K ∈ S, i.e., for each K ∈ S, Γ K−→ A
implies A ∈ Γ.5

5If Γ is an infinite set, then Γ
K−→ A means that there is a finite subset Γ′ of Γ such that Γ′ K−→ A.

15

3. (Primality) If A ∨ B ∈ Γ, then either A ∈ Γ or B ∈ Γ.

We take as worlds of our canonical model all prime theories (Γ, S). The key property
that we ensure in our construction is that (Γ, S) |= A iff A ∈ Γ. Then, our proof of
completeness is as follows. Suppose · 6 K−→ A. We define SK = {K ′ | K ′ � K} and
construct a prime theory (Γ∗, SK) such that A 6∈ Γ∗. By the key property, (Γ∗, SK) 6|= A.
This completes the proof. There are three essential steps in this proof:

(a) Defining the canonical model whose worlds are prime theories

(b) Showing that (Γ, S) |= A iff A ∈ Γ

(c) Showing that we can construct the prime theory (Γ∗, SK) such that A 6∈ Γ∗

We start by defining the canonical model.

Definition 4.7 (Canonical Kripke Model). The canonical Kripke model for DTL0 is
the tuple (W, θ,≤, (vK)K∈Prin, ρ, F), where

W is the set of all prime theories (Γ, S)

θ(Γ, S) = S

(Γ, S) ≤ (Γ′, S′) iff Γ ⊆ Γ′ and S ⊆ S′

(Γ, S) vK (Γ′, S′) iff K ∈ S′ and for each A, K says A ∈ Γ implies A ∈ Γ′

P ∈ ρ(Γ, S) iff P ∈ Γ

(Γ, S) ∈ F iff ⊥ ∈ Γ

The following lemma shows that the above definition actually describes a Kripke
model for DTL0. (Detailed proofs of all lemmas in this section are in Appendix D.2.)

Lemma 4.8 (Canonical Model). The model constructed in Definition 4.7 is a Kripke
model for DTL0, i.e., it satisfies all conditions of Definition 4.1.

Proof. We may directly verify each condition from Definition 4.1.

Next we introduce a notion of consistency for theories with respect to formulas. This
notion is needed to establish steps (b) and (c) in our proof of completeness. For a filter
S we say that the theory (Γ, S) is A consistent, if Γ 6 K−→ A for any K ∈ S. The following
critical lemma states that any A consistent theory can be extended to an A consistent
prime theory.

Lemma 4.9 (Consistent Extensions). Let (Γ, S) be an A consistent theory. Then there
is an A consistent prime theory (Γ∗, S) such that Γ ⊆ Γ∗.

Proof. By a straightforward application of Zorn’s Lemma.

At this point, we can prove the central property of our canonical model, namely that
(Γ, S) |= A iff A ∈ Γ.

16

Lemma 4.10 (Satisfaction). For each formula A, and each prime theory (Γ, S), it is
the case that (Γ, S) |= A in the canonical model iff A ∈ Γ.

Proof. By induction on A. The cases A = B ⊃ C and A = K says B require Lemma 4.9.

Finally, we prove completeness by combining Lemmas 4.9 and 4.10.

Theorem 4.11 (Completeness). Suppose · 6 K−→ A. Then there is a world w in the
canonical model such that K ∈ θ(w) and w 6|= A.

Proof. Let SK = {K ′ | K ′ � K}. Since · 6 K−→ A, the theory (·, SK) is A consistent.
By Lemma 4.9, there is an A consistent prime theory (Γ∗, SK). Take w = (Γ∗, SK).
Clearly, K ∈ θ(w) and A 6∈ Γ∗. Using the latter fact and Lemma 4.10, (Γ∗, SK) 6|= A, as
required.

Theorem 4.3 follows as an easy corollary to this theorem.

5 Connections to Other Logics

Having described both the proof-theory and the semantics of DTL0, we study connec-
tions between DTL0 and other logics, including some authorization logics. Our technical
approach is based on sound and complete translations between the logics. The purpose
of studying these connections is two-fold. First, we wish to understand DTL0 better
through these translations. Second, through translations from existing authorization
logics to DTL0, we seek to argue that DTL0 is at least as expressive as each of them.
In future, we would also like to use these (or similar) translations to try to develop a
single framework for combining policies written in different logics.

We start by observing in Section 5.1 that DTL0 generalizes the modal logic con-
structive S4 or CS4 (without ♦) [7, 13, 46] in the following sense: the trivial embedding
from CS4 to DTL0 that maps �A to ` says A, and every other connective to itself is
sound and complete. At the same time, DTL0 is quite distinct from another, rather
obvious generalization of constructive S4: the constructive multi-modal S4 that keeps
modalities independent of each other (called CS4m here). For example, the latter logic
validates (K says K ′ says A) ⊃ K ′ says A, which DTL0 does not. The question then
is whether there is a connection between DTL0 and CS4m. We show that there is an
easy sound and complete embedding of DTL0 into CS4m. We do not know whether an
embedding exists in the other direction.

Next, we examine connections to existing authorization logics. Recently, a number of
authorization logics have been proposed [3, 25, 31–33] that treat K says · as a modality
from lax logic [12, 27, 28]. Although these logics differ in constructs other than says,
each of them treats the modality K says · in the same way. In Section 5.2, we describe
a propositional core that is common to all these authorization logics, and show that it
can be translated to DTL0. By considering the degenerate case where the source of the
translation has only one modality, we obtain a translation from lax logic to DTL0. (A
different but related translation from lax logic to S4 appeared in prior work [31]).

The earliest authorization logics [6, 39] treated K says · as the weakest normal
�modality, i.e., the necessitation modality from the modal logic K. Although these logics

17

were classical, the interpretation of K says · as a weak normal modality may be useful
even in intuitionistic authorization logics. In Section 5.3, we describe a propositional
intuitionistic authorization logic with weak normal modalities, and translate it to DTL0.
In Section 5.4 we present a translation from a language for writing authorization policies,
namely Soutei [47], to DTL0.

Finally, in Section 5.5 we use a suggestion by Abadi [2] and strengthen DTL0 to
a logic which includes the axiom (K says A) ⊃ K ′ says K says A. We describe the
proof-theory of the logic briefly and show that it admits a simple translation to DTL0.
The axiom (K says A) ⊃ K ′ says K says A is stronger than axiom (4) of DTL0, and,
as observed by Abadi [2], seems to capture the essence of says in some languages like
Soutei and Binder [24]. Our translations formalize this observation. We also present a
sound and complete translation from this logic to CS4.

5.1 Connection to CS4

Constructive S4, or CS4 for short, is an intuitionistic version of the modal logic S4 [7,
13, 46]. As usual, it contains the modalities of necessity (�A) and possibility (♦A).
We are concerned here with propositional CS4 without ♦. A Hilbert style proof system
for this logic consists of any axiomatization of intuitionistic propositional logic, and the
following rules and axioms for �A [7].

` A
` �A

(nec)

` (�(A ⊃ B)) ⊃ ((�A) ⊃ (�B)) (K)
` (�A) ⊃ ��A (4)
` (�A) ⊃ A (T)

DTL0 as a Generalization of CS4. An obvious translation from CS4 to DTL0 is to
map �A to ` says A and all other connectives to themselves. Remarkably, this simple
translation is both sound and complete. Another way to look at this translation is to say
that in the degenerate case where there is only one principal (say `) in DTL0, the sole
modality ` says A behaves exactly like the necessitation modality �A from CS4. In fact,
in this degenerate case the natural deduction system for DTL0 (Figure 1) reduces to the
judgmental natural deduction system for CS4 developed by Pfenning and Davies [46].
Similarly, the sequent calculus (Figure 4) reduces to a corresponding calculus for CS4
(e.g., [32]). Moreover, the Kripke semantics of DTL0 reduce to those of CS4 described by
Alechina et al. [7] (without ♦), with the minor difference that our treatment of falsehood
uses fallible worlds explicitly. The following theorem is straightforward.

Theorem 5.1. In the special case where there is only one principal ` in DTL0, the
following are equivalent:

1. ` A treating ` says · as a CS4 � modality.

2. `` A in the natural deduction system of Figure 1.

18

Proof. First we observe that in the natural deduction system of Figure 1, the contexts
associated with hypothetical judgments become meaningless if there is only one principal
`. This is because the only place where contexts are used is the premise K ′ � K of
the rule (claims). With only one possible principal, K ′ � K is always true by the fact
that � is a pre-order. Next we observe that with contexts erased from the hypothetical
judgments, the natural deduction system for DTL0 becomes the same as the judgmental
natural deduction system of CS4 [46], taking ` claims A to be the judgment called A valid
in CS4, and taking ` says A to be �A in CS4. It follows then that any theorem validated
in DTL0 for this degenerate case is also validated in CS4, and viceversa.

The above theorem shows that DTL0 generalizes CS4. A different generalization of
CS4 may be obtained by taking several necessitation modalities that are independent of
each other. We call this logic CS4m. In the following we briefly describe CS4m, observe
that it is different from DTL0, and present a sound and complete translation from DTL0

to CS4m.

CS4m. The logic CS4m extends intuitionistic propositional logic with one necessitation
modality for each principal K, written �KA. As in DTL0, we assume a pre-order �
between principals, and also that there is a maximum principal `. The following rules
and axioms apply to �KA.

` A
` �KA

(nec)

` (�K(A ⊃ B)) ⊃ ((�KA) ⊃ (�KB)) (K)
` (�KA) ⊃ �K �K A (4)
` (�KA) ⊃ A (T)
` (�KA) ⊃ �K′A if K � K ′ (S)

(nec)–(T) mean that each modality �K behaves like a CS4 necessitation modality. Ax-
iom (S) incorporates the pre-order � into logical reasoning. A simpler logic, similar
to CS4m, without the pre-order � has been studied in the past to model knowledge in
authorization policies [32].

Relation between CS4m and DTL0. It is easy to see that the modality �KA in
CS4m is quite different from K says A in DTL0. For example, (�K �K′ A) ⊃ �K′A by
axiom (T), but K says K ′ says A does not always imply K ′ says A in DTL0. However,
there is a simple sound and complete translation from DTL0 to CS4m. Assume that
both the set of principals and the ordering � on them are the same in DTL0 and CS4m.
Further assume that for each principal K, there is a distinct atomic formula in CS4m,
also written K. Assuming that these atomic formulas are disjoint from the usual atomic
formulas P , we define a translation p·q from formulas of DTL0 to formulas of CS4m as

19

follows.
pPq = P

pA ∧ Bq = pAq ∧ pBq
pA ∨ Bq = pAq ∨ pBq
pA ⊃ Bq = pAq ⊃ pBq
p>q = >
p⊥q = ⊥

pK says Aq = �K(K ⊃ pAq)

The important part of the translation is the mapping of K says A to �K(K ⊃ pAq).
The formula K on the left of the implication acts as a “guard” on pAq, and recovers
the effect of the context associated with hypothetical judgments in DTL0: pAq can be
obtained from K ⊃ pAq only if K is true. By design, our translation ensures that K is
true if and only if we are reasoning in a context weaker than K.

Define the set of formulas O = {�`(K ⊃ K ′) | K ′ � K}. O captures the pre-order �
between principals as implications between the representations of principals as atomic
formulas. The following theorem states the correctness property for the translation.
(We abuse notation slightly and use O to also represent the formula obtained by taking
the conjunction of all formulas in the set O.)

Theorem 5.2 (Correctness). · K−→ A in DTL0 if and only if ` O ⊃ (K ⊃ pAq) in
CS4m.

Proof. A detailed proof of this theorem is in Appendix E. A brief outline of the proof
is as follows. Soundness (“only if” direction) is established by an induction on proofs
in DTL0. For convenience, we induct on proofs in the axiomatic system, but we could
also have inducted either on proofs in the sequent calculus or on proofs in the natural
deduction system.

Completeness (“if” direction) is established through a semantic argument. First we
define an interpretation of CS4m formulas in Kripke models of DTL0, and show that
the interpretation is sound. This works because the two logics CS4m and DTL0 are
similar. Next, we show that for each DTL0 formula A, |= A if and only if |= pAq. Then,
completeness of the translation follows from completeness of DTL0 with respect to its
Kripke models (Theorem 4.3). Alternatively, we could have used a purely syntactic
argument to establish completeness, as we do for all later translations in this section.
However, doing so would require that we also develop a sequent calculus for CS4m.
Although this is straightforward, it was tempting to avoid the extra work, and to use
the results already developed for the Kripke semantics of DTL0. Indeed, this turned out
to be a good choice since the semantic proof is both short and easy.

5.2 Translation from an Authorization Logic with Lax Modalities

In the recent past, a number of authorization logics have been proposed [3, 25, 31–33]
that treat K says · as a modality from lax logic [12, 27, 28]. The well studied semantics
and proof-theory of lax logic (e.g., [7, 27, 38, 46]) generalize to these authorization
logics [3, 31, 33]. Also, useful meta-theoretic properties such as non-interference can be
established readily for such authorization logics [3, 33]. Owing to these merits, a number
of proposals have used authorization logics based on lax modalities (e.g., [29, 40, 50]),

20

in particular the interpretation of the Dependency Core Calculus [5] as an authorization
logic [3].

Although authorization logics that interpret K says · as a lax modality differ widely
in the connectives and constructs allowed, an intuitionistic propositional fragment is
common to all of them. We call this common fragment ICL, borrowing the name from
earlier work [31], and show that it can be translated to DTL0.

ICL. The logic ICL extends intuitionistic propositional logic with a principal-indexed
modality K says ·, which satisfies the following axioms.

` A ⊃ (K says A) (unit)
` (K says (A ⊃ B)) ⊃ ((K says A) ⊃ K says B) (K)
` (K says K says A) ⊃ K says A (C4)

(unit) is the characterizing axiom of ICL. It means that any true formula is believed
by all principals, thus making truth irrefutable by principals. (unit) also subsumes the
(nec) rule. (C4), together with (unit), forces (K says A) ≡ (K says K says A). With
these axioms, K says · behaves exactly like the lax modality. Unlike DTL0, there is no
order between principals in ICL. A detailed description of the proof-theory and seman-
tics of ICL may be found in earlier work [3, 31, 33].

Translation from ICL to DTL0. Let us assume that all principals in ICL also exist
in DTL0, and that these principals are unrelated to each other in the order �. Then,
we may translate ICL to DTL0 as follows. (We remind the reader that the connectives
global A and K publ A were defined in Section 2.)

pPq = global P
pA ∧ Bq = pAq ∧ pBq
pA ∨ Bq = pAq ∨ pBq
p>q = >
p⊥q = ⊥

pA ⊃ Bq = global (pAq ⊃ pBq)
pK says Aq = global (K says pAq) = K publ pAq

The basic idea of our translation is to prefix some of the connectives with the defined
modality global, so that for each A, it is the case that pAq ⊃ global pAq.6 Then by
the properties of global listed above, it follows that pAq ⊃ pK says Aq. This captures
the effect of the axiom (unit) in the translation. Soundness of the remaining axioms of
ICL is straightforward. Interestingly, this translation is also complete. The following
theorem states this formally.

Theorem 5.3 (Correctness). ` A in ICL if and only if · `−→ pAq in DTL0.

Proof. Appendix F contains a complete proof of this theorem. Soundness (“only if”
direction) is readily established by induction on the derivation of ` A. Completeness
(“if” direction) is established using a simulation technique based in sequent calculi.

6Our translation is inspired by, and resembles Gödel’s translation from intuitionistic logic to classical
modal S4, where a � is put before each connective [36].

21

First, we syntactically characterize those DTL0 sequents that may occur in the proof of a
formula obtained by translation. These sequents are called regular. This characterization
relies on the subformula property of DTL0’s sequent calculus. Next, we define an inverse
translation from regular sequents to sequents of ICL, and use induction on sequent
calculus derivations to prove a simulation result: any DTL0 proof ending in a regular
sequent can be simulated in ICL. From this fact completeness follows immediately. This
method scales quite well to translations between other logics as long as the target of the
translation has a sequent calculus with the subformula property. In particular, we use
the method to prove completeness of all translations described later in this section. For
some other applications of the method, see prior work [31, 34].

5.3 Translation from an Authorization Logic with Weak Normal Modal-
ities

A necessitation modality is called normal if it satisfies the rule (nec) and the axiom (K).
In the earliest authorization logics [6, 39], each modality K says · was treated as the
weakest possible necessitation modality, i.e., a modality that admits (nec), (K), and their
consequences only. Although these early logics were classical, the treatment of K says ·
as the weakest normal necessitation modality may be interesting in an intuitionistic au-
thorization logic as well. In the following we present an intuitionistic authorization logic
that admits only (nec) and (K), and describe a sound and complete translation from it
to DTL0. We call the new logic IIK (Indexed Intuitionistic K).

IIK. The logic IIK is an extension of intuitionistic propositional logic with formulas
K says A that satisfy the following rule and axiom:

` A
` K says A

(nec)

` (K says (A ⊃ B)) ⊃ ((K says A) ⊃ (K says B)) (K)

These two together imply that for each K, K says · is the weakest normal necessitation
modality. As in ICL, there is no order between principals in IIK.

Translation to DTL0. We assume the existence of a distinguished principal d in DTL0

that is distinct from ` and all principals in IIK and that is unrelated in the order � to
all principals except itself and `. Then we define a translation from IIK to DTL0 as
follows.

pPq = P
pA ∧ Bq = pAq ∧ pBq
pA ∨ Bq = pAq ∨ pBq
p>q = >
p⊥q = ⊥

pA ⊃ Bq = pAq ⊃ pBq
pK says Aq = d says K says pAq

This translation maps all connectives except says to themselves, and maps K says A to
d says K says A. It is easy to check that the compound connective d says K says · admits

22

both the rule (nec) and the axiom (K) in DTL0, but not the axioms (C) and (4). This
ensures that the translation is both sound and complete. The following theorem states
this formally.

Theorem 5.4 (Correctness). ` A in IIK if and only if · `−→ pAq in DTL0.

Proof. See Appendix G.

5.4 Translation from Soutei

Soutei is a trust management system for enforcing authorization policies [47]. Soutei’s
language for writing authorization policies has a syntax similar to that of authorization
logics. For instance, there is a construct K says A, and there are conditionals similar to
logical implication. Like other trust management systems (e.g., [16–18]), Soutei is query
based: other programs provide authorization policies, and ask whether specific autho-
rizations follow from them. Soutei’s mechanism for query evaluation is based on ideas
from logic programming. There are fixed inference rules that constitute a decision pro-
cedure similar to backchaining. Although the policy language is first-order, we consider
here only a simplified propositional fragment of the language and show that it can be
translated into DTL0. For the lack of a better name, we call Soutei’s policy language SL.

SL. Soutei’s policy language is based on another language for writing authorization
policies, Binder [24]. Policy statements (called clauses) are divided into disjoint sets
called assertions. Each assertion has a name, which is analogous to a principal in
authorization logics. If A1, . . . , An are the clauses in an assertion named K, then we may
think of the whole assertion as the hypothesis K publ A1, . . . ,K publ An. A simplified
and abstracted syntax for SL without first-order quantification is shown below.7

Principals or names K
Atomic Formulas P
Goals G ::= P | K says P
Clauses A ::= P ← G1, . . . , Gn
Assertions ∆ ::= A1, . . . , An
Named assertions N ::= K : ∆
Hypotheses Γ ::= N1, . . . , Nk

Queries q ::= ∆ `Γ G

Policy statements are represented as clauses that have the form P ← G1, . . . , Gn, where
P is an atomic formula and each Gi is either an atomic formula or has the form K says P .
As usual, the entire clause means that P holds if each of G1, . . . , Gn holds. n may be
zero, in which case P is a fact. An assertion ∆ is a set of clauses. A named assertion
is a pair K : ∆ containing an assertion and a principal. The principal is a name for
the assertion, and may represent a physical domain (such as a computer or a user)
inside which policies contained in the assertion hold. The set of all named assertions
is called the hypothesis Γ. It is assumed implicitly that the names of all assertions in
Γ are distinct. Queries are evaluated relative to the hypothesis Γ and an assertion ∆

7We change Soutei’s original notation to make it consistent with our own notation. We also simplify
the evaluation rules slightly, without affecting their consequences.

23

containing clauses which are valid at the point of evaluation. As evaluation of a query
proceeds, ∆ may change, but Γ remains fixed. Evaluation of queries is goal directed,
and uses the following two rules:

(P ← G1, . . . , Gn) ∈ ∆ (∆ `Γ Gi)i∈{1,...,n}
∆ `Γ P

bc
(K : ∆) ∈ Γ ∆ `Γ P

∆′ `Γ K says P
says

The rule (bc) means that P holds if there is a clause P ← G1, . . . , Gn in the valid
assertion, and each Gi holds. This is the standard backchaining rule for logic programs.
The rule (says) means that K says P is true if in the assertion ∆ named K, P is true.
At the top level, evaluation of a query begins in an assertion that has the distinguished
name system.

Translation from SL to DTL0. Let us assume that DTL0 contains all principals in
SL, including the distinguished principal system and in addition contains the principal
`. We further assume that principals are only related to themselves and ` in the order
�. Then, we define the following translation from SL to DTL0.

Goals G pPq = P
pK says Pq = K publ P

Clauses A pP ← G1, . . . , Gnq = (pG1q ∧ . . . ∧ pGnq) ⊃ P
Assertions ∆ pA1, . . . , Anq = pA1q, . . . , pAnq
Named assertions N pK : A1, . . . , Anq = K publ pA1q, . . . ,K publ pAnq
Hypotheses Γ pN1, . . . , Nkq = pN1q, . . . , pNkq

The most significant part of the above translation is the use of the defined connective
publ to translate goals of the form K says P as well as named assertions. Since named
assertions are always available in SL (hypothesis never change when we evaluate a query),
it is essential that the same be true in the image of the translation. Using publ in the
translation of named assertions ensures this. The use of publ in the translation of goals
of the form K says P is optional; we could also have translated goals K says P to
K says P , without affecting the correctness of the translation, which is stated in the
following theorem.

Theorem 5.5 (Correctness). Suppose (K : ∆) ∈ Γ. Then ∆ `Γ G in SL if and only if
pΓq, p∆q K−→ pGq in DTL0.

Proof. See Appendix H.

5.5 “Binder” Logic and its Translation

In this section we consider a logic containing an axiom that is stronger than (4). We
call this axiom (Bind) for reasons that will soon be clear.

(K says A) ⊃ K ′ says K says A (Bind)

The (Bind) axiom dates back to a survey of applications of logic in access control by
Abadi [2]. In that paper, Abadi states that the (Bind) axiom is closely connected to the
authorization language Binder [24]. (Recall from Section 5.4 that Binder is the precursor

24

to, and very similar to, Soutei’s policy language SL.) The paper suggests that this axiom,
together with some other basic modal axioms, is sufficient to justify Binder’s rules. It
follows from the connections between Binder and SL that the same set of axioms is also
sufficient to justify SL’s evaluation rules. It is not mentioned if Binder’s evaluation rules
are complete with respect to this axiom.

(Bind) is interesting from our perspective because replacing axiom (4) with (Bind)
in DTL0 results in a new authorization logic, which we call BL0.8 This logic is closely
related to DTL0 and also has very appealing proof-theoretic properties. First, says in
this new logic behaves exactly like the defined connective publ in DTL0. In fact we
show that BL0 may be embedded into DTL0 by mapping K says A to K publ A and
all other connectives to themselves. Second, we obtain a sequent calculus for BL0 by
making a small change to the sequent calculus of DTL0. Third, we show that SL can
be interpreted in BL0 in a sound and complete manner through a translation that maps
named assertions using says, thus formulating a variant of Abadi’s observation as a
concrete theorem. Fourth, we argue that ICL can be embedded in BL0 in a sound and
complete manner, using the translation described in Section 5.2. Finally, we adapt the
translation from DTL0 to CS4m presented in Section 5.1 to obtain a translation from
DTL0 to CS4. Although we do not do so here, we also expect that there are sound
and complete Kripke semantics for BL0 that are very similar to (but simpler than) the
Kripke semantics of DTL0 (Section 4).

The Logic BL0

BL0 extends intuitionistic propositional logic with the modality K says A satisfying the
following rules and axioms.

` A
` K says A

(nec)

` (K says (A ⊃ B)) ⊃ ((K says A) ⊃ (K says B)) (K)
` (K says A) ⊃ K ′ says K says A (Bind)
` K says ((K says A) ⊃ A) (C)

The axiom (Bind) generalizes axiom (4) of DTL0. Unlike DTL0, we do not assume any
order between principals (although such an extension is easily conceivable). A sequent
calculus for BL0 is shown in Figure 5. This sequent calculus is a modification of the
sequent calculus for DTL0 (Figure 4). The notation Γ| in the rule (saysR) denotes the
set containing “claims” of all principals.

Γ| = {K claims C ∈ Γ}

This change in the restriction operator is sufficient to capture the generalization from
axiom (4) to (Bind). Besides this difference, the rule (claims) is modified slightly to
eliminate the order �. Although we do not do so here, we may also prove admissibility
of cut and identity theorems (Section 3.5) for BL0. The following theorem shows that
the sequent calculus and axiomatic system for BL0 are equivalent.

8BL0 is a fragment of a larger logic BL, just as DTL0 is a fragment of DTL. BL stands for “Binder
Logic”, since its says modality is closely related to the policy language Binder [24].

25

P atomic

Γ, P K−→ P
init

Γ,K claims A,A
K−→ C

Γ,K claims A
K−→ C

claims

Γ| K−→ A

Γ K′

−−→ K says A
saysR

Γ,K says A,K claims A
K′

−−→ C

Γ,K says A
K′

−−→ C
saysL

Γ K−→ A Γ K−→ B

Γ K−→ A ∧ B
∧R

Γ, A ∧ B,A,B K−→ C

Γ, A ∧ B K−→ C
∧L

Γ K−→ A

Γ K−→ A ∨ B
∨ R1

Γ K−→ B

Γ K−→ A ∨ B
∨ R2

Γ, A ∨ B,A K−→ C Γ, A ∨ B,B K−→ C

Γ, A ∨ B K−→ C
∨ L

Γ K−→ >
>R

Γ,⊥ K−→ C
⊥L

Γ, A K−→ B

Γ K−→ A ⊃ B
⊃R

Γ, A ⊃ B K−→ A Γ, A ⊃ B,B K−→ C

Γ, A ⊃ B K−→ C
⊃L

Figure 5: Sequent calculus for BL0

Theorem 5.6 (Equivalence). · K−→ A in BL0’s sequent calculus if and only if ` K says A
in BL0’s axiomatic system.

Proof. See Appendix I.

Translation from BL0 to DTL0

The modality K says A in BL0 behaves exactly like K publ A in DTL0. In fact, we
may translate BL0 to DTL0 by mapping says to publ as follows. (We assume that all
principals in BL0 are distinct from `. Also, we use the notation [[·]] for the translation
instead of our usual notation p·q to distinguish it from the translation from SL to BL0

that follows.)
[[P]] = P

[[A ∧ B]] = [[A]] ∧ [[B]]
[[A ∨ B]] = [[A]] ∨ [[B]]

[[>]] = >
[[⊥]] = ⊥

[[A ⊃ B]] = [[A]] ⊃ [[B]]
[[K says A]] = K publ [[A]]

This simple translation is both sound and complete, as the following theorem shows.

Theorem 5.7 (Correctness). Γ K−→ A in BL0’s sequent calculus if and only if [[Γ]] K−→ [[A]]
in DTL0’s sequent calculus.

26

Proof. See Appendix I.

Translation from ICL to BL0

The translation from ICL to DTL0 described in Section 5.2 is also sound and complete if
the target logic is BL0. Of course, we need to assume that BL0 also has a local authority
`, and modify the rule (claims) accordingly. The reason that this works is as follows.
Consider a formula A in ICL. We may translate this to DTL0 in two ways. First, we
may translate it directly using the translation from Section 5.2, obtaining pAq. Second,
we may translate it to BL0 using the same translation and then further translate it to
DTL0 using the translation described above, obtaining [[pAq]]. Now it is easy to show
by induction on A that in DTL0, Γ K−→ pAq iff Γ K−→ [[pAq]]. Hence by Theorems 5.3
and 5.7 we get ` A in ICL iff · `−→ pAq in DTL0 iff · `−→ [[pAq]] in DTL0 iff · `−→ pAq in
BL0.

Translation from SL to BL0

We may translate SL to BL0, much like we translated SL to DTL0. Since the modality
K says A in BL0 behaves like K publ A in DTL0, we use says in place of publ everywhere.

Goals G pPq = P
pK says Pq = K says P

Clauses A pP ← G1, . . . , Gnq = (pG1q ∧ . . . ∧ pGnq) ⊃ P
Assertions ∆ pA1, . . . , Anq = pA1q, . . . , pAnq
Named assertions N pK : A1, . . . , Anq = K says pA1q, . . . ,K says pAnq
Hypotheses Γ pN1, . . . , Nkq = pN1q, . . . , pNkq

Once again, this translation is sound and complete.

Theorem 5.8 (Correctness). Suppose (K : ∆) ∈ Γ. Then ∆ `Γ G in SL if and only if
pΓq, p∆q K−→ pGq in BL0.

Proof. Note that we have two translations from SL to DTL0. First, we have the trans-
lation p·q from Section 5.4. Second, we may compose the translations p·q : SL → BL0

and [[·]] : BL0 → DTL0 that are described above. It is very easy to check that the two
translations are the same. ([[·]] maps says to publ, which compensates the only difference
between the translations from SL to BL0 and SL to DTL0.) Thus we get,

∆ `Γ G in SL ↔ pΓq, p∆q K−→ pGq in DTL0 (Theorem 5.5)

= [[pΓq]], [[p∆q]] K−→ [[pGq]] in DTL0 (p·q = p·q; [[·]])
↔ pΓq, p∆q K−→ pGq in BL0 (Theorem 5.7)

Translation from BL0 to CS4

Finally, we adapt the translation from DTL0 to CS4m (Section 5.1) to obtain a trans-
lation from BL0 to CS4. The difference between the translations is that here we use �

27

instead of �K for translating K says A. This not only simplifies the translation, but
also captures the effects of the axiom (Bind).

pPq = P
pA ∧ Bq = pAq ∧ pBq
pA ∨ Bq = pAq ∨ pBq
pA ⊃ Bq = pAq ⊃ pBq
p>q = >
p⊥q = ⊥

pK says Aq = �(K ⊃ pAq)

Theorem 5.9 (Correctness). · K−→ A in BL0 if and only if ` K ⊃ pAq in CS4.

Proof. See Appendix I.

6 Related Work

Many authorization logics have been proposed in the past, all of which contain the
modality K says A [2, 3, 8–10, 21, 23, 25, 31–33, 40, 41]. The axioms and rules used
in these logics differ widely. The particular combination of rules used in DTL0 appears
to be novel. Perhaps most closely related to DTL0 is a proposal by Abadi in a survey
paper [2], where the axiom (K says A) ⊃ (K ′ says K says A) is suggested. says with this
axiom behaves very much like the defined connective publ in DTL0. In a recent paper,
Abadi studies connections between many possible axiomatizations of says, as well as
higher level policy constructs such as delegation and control [4].

Also related to DTL0 is work on languages for authorization (e.g., [11, 24, 37, 47]),
most notably the languages Soutei and Binder [24, 47]. Our use of the term “context”
is borrowed from the latter. Binder was also one of the earliest languages to explicitly
define a notion of exporting policies from one context to another, which is very similar to
publication of policies illustrated in Section 2. The pre-order � on principals draws on
ideas from the Dependency Core Calculus [3, 5], where the modal indices are elements
of a lattice.

Our Kripke semantics, as well as the completeness proof, are based on those of
Alechina et al’s work [7] for constructive S4. View functions were used earlier by the au-
thor and Abadi to describe semantics of authorization logics with lax-like modalities [31].
Fallible worlds have been used in the past to explain intuitionistic logic [26, 49], and also
in semantics of lax logic [27]. It also appears to us that DTL0 may be closely related
to intuitionistic hybrid logics, and especially to the work of Chadha and others [22],
but further investigation is needed to make an explicit connection. The presentation of
the sequent calculus for DTL0 is inspired by Pfenning and Davies’ work on constructive
S4 [46], and more directly by earlier work of the author and others [32].

7 Conclusion

We have presented a new constructive authorization logic, which explicitly relativizes
hypothetical reasoning to the policies of individual principals. We have described the

28

proof-theory and Kripke semantics of the logic. In ongoing work, we are considering
extensions of the logic with first-order connectives, explicit time, and linearity to model
other policy motifs. In a separate line of research, we are implementing a file system
that uses this logic to represent policies of access control.

There are several other avenues for future work. For instance, there seem to be
strong connections between DTL0 and hybrid logics. A useful generalization of DTL0

would be to internalize the pre-order � as a formula. Such an extension would allow us
to model delegation, along lines of the “speaks for” connective present in some autho-
rization logics [3, 6, 31, 39]. Although the proof-theory of such an extension is relatively
straightforward, it would be interesting to see its effects on Kripke semantics.

Acknowledgment. The author wishes to acknowledge Frank Pfenning for discussions
and feedback on the logic and the paper, and Mart́ın Abadi for feedback on the logic.

References

[1] SecPAL Preview release for .NET, 2006. http://research.microsoft.com/
projects/SecPAL/.

[2] Mart́ın Abadi. Logic in access control. In Proceedings of the 18th Annual Symposium
on Logic in Computer Science (LICS’03), pages 228–233, June 2003.

[3] Mart́ın Abadi. Access control in a core calculus of dependency. Electronic Notes in
Theoretical Computer Science, 172:5–31, April 2007. Computation, Meaning, and
Logic: Articles dedicated to Gordon Plotkin.

[4] Mart́ın Abadi. Variations in access control logic, 2008. Personal communication.

[5] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus
of dependency. In Conference Record of the 26th Sympoisum on Principles Of
Programming Languages (POPL’99), pages 147–160, San Antonio, Texas, January
1999. ACM Press.

[6] Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calcu-
lus for access control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15(4):706–734, 1993.

[7] Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Ritter. Categorical
and Kripke semantics for constructive S4 modal logic. In CSL ’01: Proceedings
of the 15th International Workshop on Computer Science Logic, pages 292–307,
London, UK, 2001. Springer-Verlag.

[8] Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In
G. Tsudik, editor, Proceedings of the 6th ACM Conference on Computer and Com-
munications Security, pages 52–62, Singapore, November 1999. ACM Press.

[9] Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD
thesis, Princeton University, November 2003.

29

http://research.microsoft.com/projects/SecPAL/
http://research.microsoft.com/projects/SecPAL/

[10] Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse,
and Peter Rutenbar. Device-enabled authorization in the Grey system. In Informa-
tion Security: 8th International Conference (ISC ’05), Lecture Notes in Computer
Science, pages 431–445, September 2005.

[11] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Design and seman-
tics of a decentralized authorization language. In 20th IEEE Computer Security
Foundations Symposium, pages 3–15, 2007.

[12] P.N. Benton, G.M. Bierman, and V.C.V. de Paiva. Computational types from a
logical perspective. Journal of Functional Programming, 8(2):177–193, 1998.

[13] Gavin Bierman and Valeria de Paiva. On an intuitionistic modal logic. Studia
Logica, 65:383–416, 2000.

[14] P. Blackburn, J. van Benthem, and F. Wolter. Handbook of Modal Logic. Elsevier
B. V., 2007.

[15] Patrick Blackburn. Representation, reasoning, and relational structures: A hybrid
logic manifesto. Logic Journal of IGPL, 8(3):339–365, 2000.

[16] M. Blaze, J. Fiegenbaum, and J. Ioannidis. The Keynote trust-management system
version 2. See http://www.ietf.org/rfc/rfc2704.txt, 1999.

[17] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. The role of trust man-
agement in distributed systems security. In Secure Internet Programming, pages
185–210, 1999.

[18] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In
SP ’96: Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages
164–173, Washington, DC, USA, 1996. IEEE Computer Society.

[19] Kevin D. Bowers, Lujo Bauer, Deepak Garg, Frank Pfenning, and Michael K. Re-
iter. Consumable credentials in logic-based access-control systems. In Proceedings
of the 14th Annual Network and Distributed System Security Symposium (NDSS
’07), San Diego, California, February 2007.

[20] Torben Braüner and Valeria de Paiva. Towards constructive hybrid logic. In Elec-
tronic Proceedings of Methods for Modalities 3 (M4M3), 2003.

[21] J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, J. I. den Hartog, and
G. Lenzini. Audit-based compliance control. International Journal of Information
Security, 6(2):133–151, 2007.

[22] Rohit Chadha, Damiano Macedonio, and Vladimiro Sassone. A hybrid intuitionistic
logic: Semantics and decidability. Journal of Logic and Computation, 16:27–59(33),
February 2006.

[23] Jason Crampton, George Loizou, and Greg O’ Shea. A logic of access control. The
Computer Journal, 44(1):137–149, 2001.

30

http://www.ietf.org/rfc/rfc2704.txt

[24] John DeTreville. Binder, a logic-based security language. In M. Abadi and
S. Bellovin, editors, Proceedings of the 2002 Symposium on Security and Privacy
(S&P’02), pages 105–113, Berkeley, California, May 2002. IEEE Computer Society
Press.

[25] Henry DeYoung, Deepak Garg, and Frank Pfenning. An authorization logic with
explicit time. In Proceedings of the 21st IEEE Computer Security Foundations Sym-
posium (CSF-21), Pittsburgh, Pennsylvania, June 2008. IEEE Computer Society
Press. Extended version available as Technical Report CMU-CS-07-166.

[26] M. Dummett. Elements of Intuitionism. Oxford University Press, 1977.

[27] M. Fairtlough and M.V. Mendler. Propositional lax logic. Information and Com-
putation, 137(1):1–33, August 1997.

[28] Matt Fairtlough, Michael Mendler, and Matt Walton. First order lax logic as a
framework for constraint logic programming. Technical Report MIPS-9714, Uni-
versity of Passau, 1997.

[29] Cédric Fournet, Andrew Gordon, and Sergio Maffeis. A type discipline for autho-
rization in distributed systems. In CSF ’07: Proceedings of the 20th IEEE Computer
Security Foundations Symposium, pages 31–48. IEEE Computer Society, 2007.

[30] Maja Frydrychowicz. Introducing new connectives in a constructive authoriza-
tion logic, 2006. Manuscript. Available from http://www.cs.mcgill.ca/~mfrydr/
files/auth_logic.pdf.

[31] Deepak Garg and Mart́ın Abadi. A modal deconstruction of access control logics.
In Proceedings of the 11th International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS 2008), pages 216–230, Budapest,
Hungary, April 2008.

[32] Deepak Garg, Lujo Bauer, Kevin Bowers, Frank Pfenning, and Michael Reiter. A
linear logic of affirmation and knowledge. In D. Gollman, J. Meier, and A. Sabelfeld,
editors, Proceedings of the 11th European Symposium on Research in Computer
Security (ESORICS ’06), pages 297–312, Hamburg, Germany, September 2006.
Springer LNCS 4189.

[33] Deepak Garg and Frank Pfenning. Non-interference in constructive authorization
logic. In J. Guttman, editor, Proceedings of the 19th Computer Security Foundations
Workshop (CSFW ’06), pages 283–293, Venice, Italy, July 2006. IEEE Computer
Society Press.

[34] Deepak Garg and Michael Carl Tschantz. From indexed lax logic to intuitionis-
tic logic. Technical Report CMU-CS-07-167, Department of Computer Science,
Carnegie Mellon University, 2007. Revised January 2008.

[35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

31

http://www.cs.mcgill.ca/~mfrydr/files/auth_logic.pdf
http://www.cs.mcgill.ca/~mfrydr/files/auth_logic.pdf

[36] Kurt Gödel. Eine interpretation des intuitionistischen aussagenkalkuls. Ergebnisse
eines mathematischen Kolloquiums, 8:39–40, 1933.

[37] Yuri Gurevich and Itay Neeman. DKAL: Distributed-knowledge authorization lan-
guage. In Proceedings of the 21st IEEE Symposium on Computer Security Founda-
tions (CSF-21), 2008.

[38] Jacob M. Howe. Proof search in lax logic. Mathematical Structures in Computer
Science, 11(4):573–588, 2001.

[39] Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber. Authen-
tication in distributed systems: Theory and practice. ACM Transactions on Com-
puter Systems, 10(4):265–310, November 1992.

[40] Chris Lesniewski-Laas, Bryan Ford, Jacob Strauss, Robert Morris, and M. Frans
Kaashoek. Alpaca: Extensible authorization for distributed services. In Proceedings
of the 14th ACM Conference on Computer and Communications Security (CCS-
2007), Alexandria, VA, October 2007.

[41] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A logic-
based approach to distributed authorization. ACM Transactions on Information
and Systems Security, 6(1):128–171, 2003.

[42] Ninghui Li, John C. Mitchell, and William H. Winsborough. Beyond proof-of-
compliance: security analysis in trust management. Journal of ACM, 52(3):474–
514, 2005.

[43] Per Martin-Löf. On the meanings of the logical constants and the justifications of
the logical laws. Nordic Journal of Philosophical Logic, 1(1):11–60, 1996.

[44] Prasad Naldurg, Stefan Schwoon, Sriram Rajamani, and John Lambert. Netra: See-
ing through access control. In FMSE ’06: Proceedings of the fourth ACM workshop
on Formal methods in security, pages 55–66, New York, NY, USA, 2006. ACM.

[45] Frank Pfenning. Structural cut elimination I. Intuitionistic and classical logic.
Information and Computation, 157(1/2):84–141, March 2000.

[46] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511–540, 2001.

[47] Andrew Pimlott and Oleg Kiselyov. Soutei, a logic-based trust-management system.
In Proceedings of the Eighth International Symposium on Functional and Logic
Programming (FLOPS 2006), pages 130–145, 2006.

[48] Raymond M. Smullyan. Forever Undecided. Oxford University Press, 1988.

[49] A. S. Troelstra and D. Van Dalen. Constructivism in Mathematics: Volume 2.
Elsevier Science Publishing Company, 1988.

[50] Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic. Evidence-
based audit. In Proceedings of the 21st IEEE Symposium on Computer Security
Foundations (CSF-21), 2008.

32

A β-reduction and η-expansion

This appendix lists all the β-reduction and η-expansion rules.

β-reduction

Γ `K t1 : A Γ `K t2 : B

Γ `Kproj1 〈t1, t2〉 β t1 : A

Γ `K t1 : A Γ `K t2 : B

Γ `Kproj2 〈t1, t2〉 β t2 : B

Γ `K t : A Γ, x : A `K t1 : C Γ, y : B `K t2 : C

Γ `K case(inl t, x.t1, y.t2) β [t/x]t1 : C

Γ `K t : B Γ, x : A `K t1 : C Γ, y : B `K t2 : C

Γ `K case(inr t, x.t1, y.t2) β [t/y]t2 : C

Γ, x : A `K t1 : B Γ `K t2 : A

Γ `K (λx.t1) t2 β [t2/x]t1 : B

Γ|K `K t1 : A Γ, x : K claims A `K′
t2 : C

Γ `K′
({t1}K⇒x.t2) β [t1/x]t2 : C

η-expansion

Γ `K t : A ∧ B
Γ `K t η 〈proj1 t, proj2 t〉 : A ∧ B

Γ `K t : A ∨ B
Γ `K t η case(t, x. inl x, y. inr y) : A ∨ B

Γ `K t : >
Γ `K t η 〈〉 : >

Γ `K t : ⊥
Γ `K t η abort t

Γ `K t : A ⊃ B
Γ `K t η λx.(t x) : A ⊃ B

(x 6∈ Γ)
Γ `K′

t : K says A

Γ `K′
t η (t⇒x.{x}K) : K says A

33

Congruence rules

Γ|K `K t t′ : A

Γ `K′ {t}K {t′}K : K says A

Γ `K′
t1 t′1 : K says A Γ, x : K claims A `K′

t2 : C

Γ `K′
(t1⇒x.t2) (t′1⇒x.t2) : C

Γ `K′
t1 : K says A Γ, x : K claims A `K′

t2 t′2 : C

Γ `K′
(t1⇒x.t2) (t1⇒x.t′2) : C

Γ `K t1 t′1 : A Γ `K t2 : B

Γ `K 〈t1, t2〉 〈t′1, t2〉 : A ∧ B
Γ `K t1 : A Γ `K t2 t′2 : B

Γ `K 〈t1, t2〉 〈t1, t′2〉 : A ∧ B

Γ `K t t′ : A ∧ B
Γ `K (proj1 t) (proj1 t′) : A

Γ `K t t′ : A ∧ B
Γ `K (proj2 t) (proj2 t′) : B

Γ `K t t′ : A

Γ `K (inl t) (inl t′) : A ∨ B
Γ `K t t′ : B

Γ `K (inr t) (inr t′) : A ∨ B

Γ `K t t′ : A ∨ B Γ, x : A `K t1 : C Γ, y : B `K t2 : C

Γ `K case(t, x.t1, y.t2) case(t′, x.t1, y.t2) : C

Γ `K t : A ∨ B Γ, x : A `K t1 t′1 : C Γ, y : B `K t2 : C

Γ `K case(t, x.t1, y.t2) case(t, x.t′1, y.t2) : C

Γ `K t : A ∨ B Γ, x : A `K t1 : C Γ, y : B `K t2 t′2 : C

Γ `K case(t, x.t1, y.t2) case(t, x.t1, y.t′2) : C

Γ `K t t′ : ⊥
Γ `K (abort t) (abort t′) : C

Γ, x : A `K t t′ : B

Γ `K λx.t λx.t′ : A ⊃ B

Γ `K t1 t′1 : A ⊃ B Γ `K t2 : A

Γ `K t1 t2 t′1 t2 : B

Γ `K t1 : A ⊃ B Γ `K t2 t′2 : A

Γ `K t1 t2 t1 t
′
2 : B

B Properties of the Sequent Calculus (Section 3.5)

In this appendix, we describe proofs of Theorems from Section 3.5. We start with sub-
sumption.

Theorem B.1 (Subsumption; Theorem 3.6). Γ K−→ A and K � K ′ imply Γ K′
−−→ A.

Proof. By induction on the given derivation of Γ K−→ A. We analyze cases of the last

34

rule in the derivation.

Case.
P atomic

Γ, P K−→ P
init

1. Γ, P K′
−−→ P (Rule (init))

Case.
Γ,K ′′ claims A,A

K−→ C K ′′ � K

Γ,K ′′ claims A
K−→ C

claims

1. Γ,K ′′ claims A,A
K′
−−→ C (i.h.)

2. K ′′ � K (Premise)

3. K � K ′ (Assumption)

4. K ′′ � K ′ (Transitivity 2, 3)

5. Γ,K ′′ claims A
K′
−−→ C (Rule (claims) 1, 4)

Case.
Γ|K′′

K′′
−−→ A

Γ K−→ K ′′ says A
saysR

1. Γ|K′′
K′′
−−→ A (Premise)

2. Γ K′
−−→ K ′′ says A (Rule (saysR))

Case.
Γ,K ′′ says A,K ′′ claims A

K−→ C

Γ,K ′′ says A
K−→ C

saysL

1. Γ,K ′′ says A,K ′′ claims A
K′
−−→ C (i.h.)

2. Γ,K ′′ says A
K′
−−→ C (Rule (saysL))

Case.
Γ K−→ A Γ K−→ B

Γ K−→ A ∧ B
∧R

1. Γ K′
−−→ A (i.h.)

2. Γ K′
−−→ B (i.h.)

3. Γ K′
−−→ A ∧ B (Rule (∧R) 1, 2)

Case.
Γ, A ∧ B,A,B K−→ C

Γ, A ∧ B K−→ C
∧L

35

1. Γ, A ∧ B,A,B K′
−−→ C (i.h.)

2. Γ, A ∧ B K′
−−→ C (Rule (∧L))

Case.
Γ K−→ A

Γ K−→ A ∨ B
∨ R1

1. Γ K′
−−→ A (i.h.)

2. Γ K′
−−→ A ∨ B (Rule (∨ R1))

Case.
Γ K−→ B

Γ K−→ A ∨ B
∨ R2

1. Γ K′
−−→ B (i.h.)

2. Γ K′
−−→ A ∨ B (Rule (∨ R2))

Case.
Γ, A ∨ B,A K−→ C Γ, A ∨ B,B K−→ C

Γ, A ∨ B K−→ C
∨ L

1. Γ, A ∨ B,A K′
−−→ C (i.h.)

2. Γ, A ∨ B,B K′
−−→ C (i.h.)

3. Γ, A ∨ B K′
−−→ C (Rule (∨ L) 1, 2)

Case.
Γ K−→ >

>R

1. Γ K′
−−→ > (Rule (>R))

Case.
Γ,⊥ K−→ C

⊥L

1. Γ,⊥ K′
−−→ C (Rule (⊥L))

Case.
Γ, A K−→ B

Γ K−→ A ⊃ B
⊃R

1. Γ, A K′
−−→ B (i.h.)

2. Γ K′
−−→ A ⊃ B (Rule (⊃R))

36

Case.
Γ, A ⊃ B K−→ A Γ, A ⊃ B,B K−→ C

Γ, A ⊃ B K−→ C
⊃L

1. Γ, A ⊃ B K′
−−→ A (i.h.)

2. Γ, A ⊃ B,B K′
−−→ C (i.h.)

3. Γ, A ⊃ B K′
−−→ C (Rule (⊃L))

Theorem B.2 (Admissibility of Cut; Theorem 3.7). The following cut principles hold
for the sequent calculus of Figure 4.

1. Γ K−→ A and Γ, A K−→ C imply that Γ K−→ C.

2. Γ|K
K−→ A and Γ,K claims A

K′
−−→ C imply that Γ K′

−−→ C.

Proof. We prove both statements simultaneously by lexicographic induction, first on
the size of the cut judgment, and then on the size of the two given derivations, as
in earlier work [45]. For the size of the cut judgment, we assume the strict order
(K says A) true > (K claims A) > A true. We analyze cases on the last rules in the two
given derivations, which we name D and E respectively. We classify all the rules into
right and left. Right rules are (saysR), (∧R), (∨ R1), (∨ R2), (>R), and (⊃R). The
remaining rules, including (init), are left rules.

For proving (1), we first analyze three broad categories:

1. E ends in a right rule.

2. E ends in a left rule, and the cut is non-principal.

3. D ends in a left rule.

This leaves only the possibility where E ends in a left rule, D ends in a right rule, and
the cut is principal. In this case we observe that the last rules in D and E must be right
and left rules of the same connective. We call these cases principal cuts.

For proving (2), we analyze cases on the last rule in E .

Proof of (1).

Cases where E ends in a right rule.

Case. E =
Γ|K

K−→ B

Γ, A K′
−−→ K says B

saysR (Note: A 6∈ Γ|K)

1. Γ|K
K−→ B (Premise)

2. Γ K′
−−→ K says B (Rule (saysR))

37

Case. E =
Γ, A K−→ C1 Γ, A K−→ C2

Γ, A K−→ C1 ∧ C2

∧R

1. Γ K−→ C1 (i.h. on D and 1st premise)

2. Γ K−→ C2 (i.h. on D and 2nd premise)

3. Γ K−→ C1 ∧ C2 (Rule (∧R))

Case. E =
Γ, A K−→ C1

Γ, A K−→ C1 ∨ C2

∨ R1

1. Γ K−→ C1 (i.h. on D and premise)

2. Γ K−→ C1 ∨ C2 (Rule (∨ R1))

Case. E =
Γ, A K−→ C2

Γ, A K−→ C1 ∨ C2

∨ R2

1. Γ K−→ C2 (i.h. on D and premise)

2. Γ K−→ C1 ∨ C2 (Rule (∨ R2))

Case. E =
Γ, A K−→ >

>R

1. Γ K−→ > (Rule (>R))

Case. E =
Γ, A,C1

K−→ C2

Γ, A K−→ C1 ⊃ C2

⊃R

1. Γ, C1
K−→ C2 (i.h. on D and premise)

2. Γ K−→ C1 ⊃ C2 (Rule (⊃R))

Cases where E ends in a left rule and cut is not principal.

Case. E =
P atomic

Γ, A, P K−→ P
init

1. Γ, P K−→ P (Rule (init))

Case. E =
Γ, A,K ′ claims B,B

K−→ C K ′ � K

Γ, A,K ′ claims B
K−→ C

claims

38

1. Γ,K ′ claims B,B
K−→ C (i.h. on D and premise)

2. Γ,K ′ claims B
K−→ C (Rule (claims))

Case. E =
Γ, A,K ′ says B,K ′ claims B

K−→ C

Γ, A,K ′ says B
K−→ C

saysL

1. Γ,K ′ says B,K ′ claims B
K−→ C (i.h. on D and premise)

2. Γ,K ′ says B
K−→ C (Rule (saysL))

Case. E =
Γ, A,B1 ∧ B2, B1, B2

K−→ C

Γ, A,B1 ∧ B2
K−→ C

∧L

1. Γ, B1 ∧ B2, B1, B2
K−→ C (i.h. on D and premise)

2. Γ, B1 ∧ B2
K−→ C (Rule (∧L))

Case. E =
Γ, A,B1 ∨ B2, B1

K−→ C Γ, A,B1 ∨ B2, B2
K−→ C

Γ, A,B1 ∨ B2
K−→ C

∨ L

1. Γ, B1 ∨ B2, B1
K−→ C (i.h. on D and 1st premise)

2. Γ, B1 ∨ B2, B2
K−→ C (i.h. on D and 2nd premise)

3. Γ, B1 ∨ B2
K−→ C (Rule (∨L))

Case. E =
Γ, A,⊥ K−→ C

⊥L

1. Γ,⊥ K−→ C (Rule (⊥L))

Case. E =
Γ, A,B1 ⊃ B2

K−→ B1 Γ, A,B1 ⊃ B2, B2
K−→ C

Γ, A,B1 ⊃ B2
K−→ C

⊃L

1. Γ, B1 ⊃ B2
K−→ B1 (i.h. on D and 1st premise)

2. Γ, B1 ⊃ B2, B2
K−→ C (i.h. on D and 2nd premise)

3. Γ, B1 ⊃ B2
K−→ C (Rule (⊃L))

Cases where D ends in a left rule.

Case. D =
A atomic

Γ, A K−→ A
init

39

1. E :: Γ, A,A K−→ C (Assumption)

2. Γ, A K−→ C (Strengthening)

Case. D =
Γ,K ′ claims B,B

K−→ A K ′ � K

Γ,K ′ claims B
K−→ A

claims

1. E :: Γ,K ′ claims B,A
K−→ C (Assumption)

2. Γ,K ′ claims B,B,A
K−→ C (Weakening)

3. Γ,K ′ claims B,B
K−→ C (i.h. on premise and 2)

4. Γ,K ′ claims B
K−→ C (Rule (claims))

Case. D =
Γ,K ′ says B,K ′ claims B

K−→ A

Γ,K ′ says B
K−→ A

saysL

1. E :: Γ,K ′ says B,A
K−→ C (Assumption)

2. Γ,K ′ says B,K ′ claims B,A
K−→ C (Weakening)

3. Γ,K ′ says B,K ′ claims B
K−→ C (i.h. on premise and 2)

4. Γ,K ′ says B
K−→ C (Rule (saysL))

Case. D =
Γ, B1 ∧ B2, B1, B2

K−→ A

Γ, B1 ∧ B2
K−→ A

∧L

1. E :: Γ, B1 ∧ B2, A
K−→ C (Assumption)

2. Γ, B1 ∧ B2, B1, B2, A
K−→ C (Weakening)

3. Γ, B1 ∧ B2, B1, B2
K−→ C (i.h. on premise and 2)

4. Γ, B1 ∧ B2
K−→ C (Rule (∧L))

Case. D =
Γ, B1 ∨ B2, B

K−→ A Γ, B1 ∨ B2, B2
K−→ A

Γ, B1 ∨ B2
K−→ A

∨ L

1. E :: Γ, B1 ∨ B2, A
K−→ C (Assumption)

2. Γ, B1 ∨ B2, B1, A
K−→ C (Weakening on 1)

3. Γ, B1 ∨ B2, B1
K−→ C (i.h. on 1st premise and 2)

40

4. Γ, B1 ∨ B2, B2, A
K−→ C (Weakening on 1)

5. Γ, B1 ∨ B2, B2
K−→ C (i.h. on 2nd premise and 4)

6. Γ, B1 ∨ B2
K−→ C (Rule (∨L) on 3, 5)

Case. D =
Γ,⊥ K−→ A

⊥L

1. E :: Γ,⊥, A K−→ C (Assumption)

2. Γ,⊥ K−→ C (Rule (⊥L))

Case. D =
Γ, B1 ⊃ B2

K−→ B1 Γ, B1 ⊃ B2, B2
K−→ A

Γ, B1 ⊃ B2
K−→ A

⊃L

1. E :: Γ, B1 ⊃ B2, A
K−→ C (Assumption)

2. Γ, B1 ⊃ B2, B2, A
K−→ C (Weakening)

3. Γ, B1 ⊃ B2, B2
K−→ C (i.h. on 2nd premise and 2)

4. Γ, B1 ⊃ B2
K−→ C (Rule (⊃L) on 1st premise and 3)

Cases of principal cuts. D ends in a right rule, and E ends in a left rule. Note that
there are no principal cuts when E ends in (init) or (⊥L), because there are no right
rules for atomic formulas or ⊥. Similarly, there is no case for principal cut if D ends in
(>R) because > has no left rule. The case of principal cut when E ends in rule (claims)
is covered in clause (2) of the theorem.

Case.

D =
Γ|K′

K′
−−→ A

Γ K−→ K ′ says A
saysR E =

Γ,K ′ says A,K ′ claims A
K−→ C

Γ,K ′ says A
K−→ C

saysL

1. Γ,K ′ claims A
K−→ C (i.h. on D and premise of E)

2. Γ K−→ C (i.h.(2) on premise of D and 1)

Case.

D =
Γ K−→ A Γ K−→ B

Γ K−→ A ∧ B
∧R E =

Γ, A ∧ B,A,B K−→ C

Γ, A ∧ B K−→ C
∧L

1. Γ, A,B K−→ C (i.h. on D and premise of E)

41

2. Γ, B K−→ C (i.h. on 1st premise of D and 1)

3. Γ K−→ C (i.h. on 2nd premise of D and 2)

Case.

D =
Γ K−→ A

Γ K−→ A ∨ B
∨ R1 E =

Γ, A ∨ B,A K−→ C Γ, A ∨ B,B K−→ C

Γ, A ∨ B K−→ C
∨ L

1. Γ, A K−→ C (i.h. on D and 1st premise of E)

2. Γ K−→ C (i.h. on premise of D and 1)

Case.

D =
Γ K−→ B

Γ K−→ A ∨ B
∨ R2 E =

Γ, A ∨ B,A K−→ C Γ, A ∨ B,B K−→ C

Γ, A ∨ B K−→ C
∨ L

1. Γ, B K−→ C (i.h. on D and 2nd premise of E)

2. Γ K−→ C (i.h. on premise of D and 1)

Case.

D =
Γ, A K−→ B

Γ K−→ A ⊃ B
⊃R E =

Γ, A ⊃ B K−→ A Γ, A ⊃ B,B K−→ C

Γ, A ⊃ B K−→ C
⊃L

1. Γ, B K−→ C (i.h. on D and 2nd premise of E)

2. Γ, A K−→ C (i.h. on premise of D and 1)

3. Γ K−→ A (i.h. on D and 1st premise of E)

4. Γ K−→ C (i.h. on 3 and 2)

Proof of (2).

We analyze cases on the last rule of E.

Case. E =
P atomic

Γ,K claims A,P
K−→ P

init

1. Γ, P K−→ P (Rule (init))

42

Case. E =
Γ,K claims A,A

K′
−−→ C K � K ′

Γ,K claims A
K′
−−→ C

claims (Principal cut)

1. D :: Γ|K
K−→ A (Assumption)

2. Γ, A K′
−−→ C (i.h. on D and 1st premise of E)

3. Γ K−→ A (Weakening on 1)

4. Γ K′
−−→ A (Subsumption (Theorem B.1) on 3 using K � K ′)

5. Γ K′
−−→ C (i.h.(1) on 4 and 2)

Case. E =
Γ,K claims A,K ′′ claims B,B

K′
−−→ C K ′′ � K ′

Γ,K claims A,K ′′ claims B
K′
−−→ C

claims (Non-Principal

cut)

1. Γ,K ′′ claims B,B
K′
−−→ C (i.h. on D and 1st premise of E)

2. Γ,K ′′ claims B
K′
−−→ C (Rule (claims) on 1 and K ′′ � K ′)

Case. E =
Γ|K′′ ,K claims A

K′′
−−→ C

Γ,K claims A
K′
−−→ K ′′ says C

saysR (K � K ′′)

1. D :: Γ|K
K−→ A (Assumption)

2. Γ|K′′ |K = Γ|K (Assumption K � K ′′)

3. D :: Γ|K′′ |K
K−→ A (From 1 and 2)

4. Γ|K′′
K′′
−−→ C (i.h. on 3 and premise of E)

5. Γ K′
−−→ K ′′ says C (Rule (saysR) on 4)

Case. E =
Γ|K′′

K′′
−−→ C

Γ,K claims A
K′
−−→ K ′′ says C

saysR (K 6� K ′′)

1. Γ K′
−−→ K ′′ says C (Rule (saysR) on premise of E)

Case. E =
Γ,K claims A,K ′′ says B,K ′′ claims B

K′
−−→ C

Γ,K claims A,K ′′ says B
K′
−−→ C

saysL

1. D :: Γ|K
K−→ A (Assumption)

43

2. (Γ,K ′′ says B,K ′′ claims B)|K
K−→ A (Possibly Weakening 1)

3. Γ,K ′′ says B,K ′′ claims B
K′
−−→ C (i.h. on 2 and premise of E)

4. Γ,K ′′ says B
K′
−−→ C (Rule (saysL))

Case. E =
Γ,K claims A

K′
−−→ C1 Γ,K claims A

K′
−−→ C2

Γ,K claims A
K′
−−→ C1 ∧ C2

∧R

1. Γ K′
−−→ C1 (i.h. on D and 1st premise of E)

2. Γ K′
−−→ C2 (i.h. on D and 2nd premise of E)

3. Γ K′
−−→ C1 ∧ C2 (Rule (∧R))

Case. E =
Γ,K claims A,B1 ∧ B2, B1, B2

K′
−−→ C

Γ,K claims A,B1 ∧ B2
K′
−−→ C

∧L

1. Γ, B1 ∧ B2, B1, B2
K′
−−→ C (i.h. on D and premise of E)

2. Γ, B1 ∧ B2
K′
−−→ C (Rule (∧L))

Case. E =
Γ,K claims A

K′
−−→ C1

Γ,K claims A
K′
−−→ C1 ∨ C2

∨ R1

1. Γ K′
−−→ C1 (i.h. on D and premise of E)

2. Γ K′
−−→ C1 ∨ C2 (Rule (∨ R1))

Case. E =
Γ,K claims A

K′
−−→ C2

Γ,K claims A
K′
−−→ C1 ∨ C2

∨ R2

1. Γ K′
−−→ C2 (i.h. on D and premise of E)

2. Γ K′
−−→ C1 ∨ C2 (Rule (∨ R2))

Case. E =
Γ,K claims A,B1 ∨ B2, B1

K′
−−→ C Γ,K claims A,B1 ∨ B2, B2

K′
−−→ C

Γ,K claims A,B1 ∨ B2
K′
−−→ C

∨ L

1. Γ, B1 ∨ B2, B1
K′
−−→ C (i.h. on D and 1st premise of E)

2. Γ, B1 ∨ B2, B2
K′
−−→ C (i.h. on D and 2nd premise of E)

44

3. Γ, B1 ∨ B2
K′
−−→ C (Rule (∨L))

Case. E =
Γ,K claims A

K′
−−→ >

>R

1. Γ K′
−−→ > (Rule (>R))

Case. E =
Γ,K claims A,⊥ K′

−−→ C
⊥L

1. Γ,⊥ K′
−−→ C (Rule (⊥L))

Case. E =
Γ,K claims A,C1

K′
−−→ C2

Γ,K claims A
K′
−−→ C1 ⊃ C2

⊃R

1. Γ, C1
K′
−−→ C2 (i.h. on D and premise of E)

2. Γ K′
−−→ C1 ⊃ C2 (Rule (⊃R))

Case. E =
Γ,K claims A,B1 ⊃ B2

K′
−−→ B1 Γ,K claims A,B1 ⊃ B2, B2

K′
−−→ C

Γ,K claims A,B1 ⊃ B2
K′
−−→ C

⊃L

1. Γ, B1 ⊃ B2
K′
−−→ B1 (i.h. on D and 1st premise of E)

2. Γ, B1 ⊃ B2, B2
K′
−−→ C (i.h. on D and 2nd premise of E)

3. Γ, B1 ⊃ B2
K′
−−→ C (Rule (⊃L))

Theorem B.3 (Identity; Theorem 3.8). For each formula A, Γ, A K−→ A.

Proof. By induction on A.

Case. A = P (A is atomic)

1. Γ, P K−→ P (Rule (init))

Case. A = A1 ∧ A2

1. Γ, A1 ∧ A2, A1, A2
K−→ A1 (i.h.)

2. Γ, A1 ∧ A2, A1, A2
K−→ A2 (i.h.)

3. Γ, A1 ∧ A2, A1, A2
K−→ A1 ∧ A2 (Rule (∧R) 1, 2)

4. Γ, A1 ∧ A2
K−→ A1 ∧ A2 (Rule (∧L) 3)

45

Case. A = A1 ∨ A2

1. Γ, A1 ∨ A2, A1
K−→ A1 (i.h.)

2. Γ, A1 ∨ A2, A1
K−→ A1 ∨ A2 (Rule (∨ R1) 1)

3. Γ, A1 ∨ A2, A2
K−→ A2 (i.h.)

4. Γ, A1 ∨ A2, A2
K−→ A1 ∨ A2 (Rule (∨ R2) 3)

5. Γ, A1 ∨ A2
K−→ A1 ∨ A2 (Rule (∨L) 2, 4)

Case. A = >

1. Γ,> K−→ > (Rule (>R))

Case. A = ⊥

1. Γ,⊥ K−→ ⊥ (Rule (⊥L))

Case. A = A1 ⊃ A2

1. Γ, A1 ⊃ A2, A1
K−→ A1 (i.h.)

2. Γ, A1 ⊃ A2, A1, A2
K−→ A2 (i.h.)

3. Γ, A1 ⊃ A2, A1
K−→ A2 (Rule (⊃L))

4. Γ, A1 ⊃ A2
K−→ A1 ⊃ A2 (Rule (⊃R))

Case. A = K ′ says B

1. Γ|K′ ,K ′ claims B,B
K′
−−→ B (i.h.)

2. Γ|K′ ,K ′ claims B
K′
−−→ B (Rule (claims))

3. Γ,K ′ says B,K ′ claims B
K−→ K ′ says B (Rule (saysR))

4. Γ,K ′ says B
K−→ K ′ says B (Rule (saysL))

C Proof of Equivalence from Section 3.6

The objective of this section is to prove Theorem 3.9, showing that the axiomatic, natural
deduction, and sequent calculus proof systems are equivalent. Although it is possible
to show that natural deduction and sequent calculus are equivalent without reference
to the axiomatic system, we do not do this here, and prove the equivalence of the three
systems simultaneously. First, we expand the theory of the axiomatic system.

46

C.1 The Axiomatic System for DTL0

In Section 2, we presented some rules and axioms for the axiomatic system. Here, we
list all the rules and axioms, including those listed earlier.

`H A

`H K says A
nec

`H A ⊃ B `H A

`H B
mp

A is an axiom
`H A

ax

Axioms:

(K says (A ⊃ B)) ⊃ ((K says A) ⊃ (K says B)) (K)
(K says A) ⊃ K says K says A (4)
K says ((K says A) ⊃ A) (C)
(K1 says A) ⊃ (K2 says A) if K1 � K2 (S)
A ⊃ (B ⊃ A) (imp1)
(A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)) (imp2)
A ⊃ (B ⊃ (A ∧ B)) (conj1)
(A ∧ B) ⊃ A (conj2)
(A ∧ B) ⊃ B (conj3)
A ⊃ (A ∨ B) (disj1)
B ⊃ (A ∨ B) (disj2)
(A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)) (disj3)
> (true)
⊥ ⊃ A (false)

Next, we introduce a generalized axiomatic system, to reason from hypothesis. Let Γ
denote a multi set of formulas (not judgments). We write Γ `G A to mean that A may
be established from assumptions Γ. The rules of the generalized axiomatic system are:

Γ, A `G A
use

· `G A
Γ `G K says A

nec
Γ `G A ⊃ B Γ `G A

Γ `G B
mp

A is an axiom
Γ `G A

ax

Now we prove some basic properties of the generalized axiomatic system, including
the deduction theorem, and show that the generalized system reduces to the axiomatic
system when Γ is empty.

Lemma C.1 (Basic properties). The following hold.

1. (Weakening) Γ `G A implies Γ,Γ′ `G A

2. (Substitution) Γ `G A and Γ, A `G B imply Γ `G B

Proof. (1) follows by an easy induction on the derivation of Γ `G A (details omitted
here). (2) follows by induction on the derivation of Γ, A `G B. We analyze the last rule
in the derivation.

Case.
Γ, A `G A

use (Principal case)

47

1. Γ `G A (First given derivation)

Case.
Γ, A,B `G B

use (Non-principal case)

1. Γ, B `G B (Rule (use))

Case.
· `G B

Γ, A `G K says B
nec

1. · `G B (Premise)

2. Γ `G K says B (Rule (nec))

Case.
Γ, A `G B1 ⊃ B2 Γ, A `G B1

Γ, A `G B2
mp

1. Γ `G B1 ⊃ B2 (i.h. on 1st premise)

2. Γ `G B1 (i.h. on 2nd premise)

3. Γ `G B2 (Rule (mp))

Case.
B is an axiom

Γ, A `G B
ax

1. Γ `G B (Rule (ax))

Theorem C.2 (Deduction). The following hold.

1. Γ `G A ⊃ B implies Γ, A `G B

2. Γ, A `G B implies Γ `G A ⊃ B

Proof. We prove (1) first. Assume Γ `G A ⊃ B. Then we have

1. Γ, A `G A ⊃ B (Weakening)

2. Γ, A `G A (Rule (use))

3. Γ, A `G B (Rule (mp))

Next we prove (2). We induct on the derivation of Γ, A `G B, case analyzing the
last rule.

Case.
Γ, A `G A

use (Principal case)

Here A = B, and we must show that Γ `G A ⊃ A.

1. Γ `G (A ⊃ (B ⊃ A)) ⊃ ((A ⊃ ((B ⊃ A) ⊃ A)) ⊃ (A ⊃ A)) (Rule (ax) and imp2)

48

2. Γ `G A ⊃ (B ⊃ A) (Rule (ax) and imp1)

3. Γ `G (A ⊃ ((B ⊃ A) ⊃ A)) ⊃ (A ⊃ A) (Rule (mp))

4. Γ `G A ⊃ ((B ⊃ A) ⊃ A) (Rule (ax) and imp1)

5. Γ `G A ⊃ A (Rule (mp) on 3 and 4)

Case.
Γ, A,B `G B

use (Non-principal case)

1. Γ, B `G B ⊃ (A ⊃ B) (Rule (ax) and imp1)

2. Γ, B `G B (Rule (use))

3. Γ, B `G A ⊃ B (Rule (mp))

Case.
· `G B

Γ, A `G K says B
nec

1. Γ `G K says B (Rule (nec) on premise)

2. Γ `G (K says B) ⊃ (A ⊃ K says B) (Rule (ax) and imp1)

3. Γ `G A ⊃ K says B (Rule mp)

Case.
Γ, A `G B1 ⊃ B2 Γ, A `G B1

Γ, A `G B2
mp

1. Γ `G A ⊃ (B1 ⊃ B2) (i.h. on premise 1)

2. Γ `G A ⊃ B1 (i.h. on premise 2)

3. Γ `G (A ⊃ B1) ⊃ ((A ⊃ (B1 ⊃ B2)) ⊃ (A ⊃ B2)) (Rule (ax) and imp2)

4. Γ `G (A ⊃ (B1 ⊃ B2)) ⊃ (A ⊃ B2) (Rule (mp) on 3 and 2)

5. Γ `G A ⊃ B2 (Rule (mp) on 4 and 1)

Case.
B is an axiom

Γ, A `G B
ax

1. Γ `G B ⊃ (A ⊃ B) (Rule (ax) and imp1)

2. Γ `G B (Rule (ax))

3. Γ `G A ⊃ B (Rule (mp))

Theorem C.3 (G iff H). `H A if and only if · `G A

Proof. In each direction by straightforward induction on the given derivation.

49

Lemma C.4 (Currying). Γ `G (A ∧ B) ⊃ C if and only if Γ `G A ⊃ (B ⊃ C).

Proof. (“If” direction)

1. Γ `G A ⊃ (B ⊃ C) (Assumption)

2. Γ, A,B `G C (Theorem C.2 twice)

3. Γ, A ∧ B `G (A ∧ B) ⊃ A (Rule (ax) and conj1)

4. Γ, A ∧ B `G (A ∧ B) (Rule (use))

5. Γ, A ∧ B `G A (Rule (mp) on 3 and 4)

6. Γ, A ∧ B `G (A ∧ B) ⊃ B (Rule (ax) and conj2)

7. Γ, A ∧ B `G B (Rule (mp) on 6 and 4)

8. Γ, A ∧ B,B `G C (Substitution Lemma C.1 on 5 and 2)

9. Γ, A ∧ B `G C (Substitution Lemma C.1 on 7 and 8)

10. Γ `G (A ∧ B) ⊃ C (Theorem C.2)

(“Only if” direction)

1. Γ `G (A ∧ B) ⊃ C (Assumption)

2. Γ, A ∧ B `G C (Theorem C.2)

3. Γ, A,B `G A ⊃ (B ⊃ (A ∧ B)) (Rule (ax) and conj3)

4. Γ, A,B `G A (Rule (use))

5. Γ, A,B `G B ⊃ (A ∧ B) (Rule (mp) on 3 and 4)

6. Γ, A,B `G B (Rule (use))

7. Γ, A,B `G (A ∧ B) (Rule (mp) on 5 and 6)

8. Γ, A,B `G C (Substitution Lemma C.1 on 7 and 2)

9. Γ, A `G B ⊃ C (Theorem C.2)

10. Γ `G A ⊃ (B ⊃ C) (Theorem C.2)

Lemma C.5. K ′ � K and · `G K ′ says A imply · `G K says K ′ says A

Proof.

1. · `G (K ′ says A) ⊃ K ′ says K ′ says A (Rule (ax) and Axiom 4)

2. K ′ says A `G K ′ says K ′ says A (Theorem C.2)

3. K ′ says A `G (K ′ says K ′ says A) ⊃ (K says K ′ says A) (Rule (ax) and S)

4. K ′ says A `G K says K ′ says A (Rule (mp) on 3 and 2)

5. · `G (K ′ says A) ⊃ K says K ′ says A (Theorem C.2)

50

C.2 Proof of Equivalence

Let Γ denote the reification of the Γ as a formula:

· = >
Γ, A true = Γ ∧ A

Γ,K claims A = Γ ∧ (K says A)

Lemma C.6 (Natural Deduction ⇒ Axiomatic). Γ `K A implies · `G K says (Γ ⊃ A)

Proof. We induct on the derivation of Γ `K A, analyzing cases on the last rule. Some
of the cases related to says and claims are shown below. Others are straightforward.
To keep proofs short, we freely use properties such as Currying (Lemma C.4) and
(K says (A ∧ B)) ≡ ((K says A) ∧ (K says B)), without explicit mention.

Case.
Γ, A `K A

hyp

1. Γ `G A ⊃ A (See proof of Theorem C.2.2; case (use))

2. · `G Γ ⊃ (A ⊃ A) (Theorem C.2)

3. · `G (Γ ∧ A) ⊃ A (Lemma C.4)

4. · `G K says ((Γ ∧ A) ⊃ A) (Rule (nec))

Case.
K ′ � K

Γ,K ′ claims A `K A
claims

1. · `G K ′ says ((K ′ says A) ⊃ A) (Rule (ax) and C)

2. · `G ((K ′ says A) ⊃ A) ⊃ ((Γ ∧ (K ′ says A)) ⊃ A) (Theorem in G)

3. · `G K ′ says (((K ′ says A) ⊃ A) ⊃ ((Γ ∧ (K ′ says A)) ⊃ A)) (Rule (nec) on 2)

4. · `G (K ′ says ((K ′ says A) ⊃ A)) ⊃ K ′ says ((Γ ∧ (K ′ says A)) ⊃ A)

(Rule (ax), K and (mp) on 3)

5. · `G K ′ says ((Γ ∧ (K ′ says A)) ⊃ A) (Rule (mp) on 4 and 1)

6. · `G (K ′ says ((Γ ∧ (K ′ says A)) ⊃ A)) ⊃ K says ((Γ ∧ (K ′ says A)) ⊃ A)

(Rule (ax) and S; K ′ � K)

7. · `G K says ((Γ ∧ (K ′ says A)) ⊃ A) (Rule (mp) on 6 and 5)

Case.
Γ|K′ `K′

A

Γ `K K ′ says A
saysI

Let Γ|K′ = K1 claims A1, . . . ,Kn claims An. Then Ki � K ′ (1 ≤ i ≤ n)

1. · `G K ′ says (((K1 says A1) ∧ . . . ∧ (Kn says An)) ⊃ A) (i.h. on premise)

51

2. · `G ((K ′ says K1 says A1) ∧ . . . ∧ (K ′ says Kn says An)) ⊃ K ′ says A

(Rule (ax), K and (mp))

3. K ′ says K1 says A1, . . . ,K
′ says Kn says An `G K ′ says A (Theorem C.2)

4. · `G (Ki says Ai) ⊃ K ′ says Ki says Ai (Lemma C.5)

5. Ki says Ai `G K ′ says Ki says Ai (Theorem C.2)

6. K1 says A1, . . . ,Kn says An `G K ′ says A (Substitution Lemma C.1 on 5 and 3)

7. Γ `G K ′ says A (Weakening Lemma C.1)

8. · `G Γ ⊃ K ′ says A (Theorem C.2)

9. · `G K says (Γ ⊃ K ′ says A) (Rule (nec))

Case.
Γ `K K ′ says B Γ,K ′ claims B `K A

Γ `K A
saysE

1. · `G K says (Γ ⊃ K ′ says B) (i.h. on 1st premise)

2. · `G K says (Γ ⊃ ((K ′ says B) ⊃ A)) (i.h. on 2nd premise)

3. · `G (Γ ⊃ K ′ says B) ⊃ ((Γ ⊃ ((K ′ says B) ⊃ A)) ⊃ (Γ ⊃ A)) (Rule (ax) and
imp2)

4. · `G K says ((Γ ⊃ K ′ says B) ⊃ ((Γ ⊃ ((K ′ says B) ⊃ A)) ⊃ (Γ ⊃ A))) (Rule
(nec))

5. · `G (K says (Γ ⊃ K ′ says B)) ⊃ ((K says (Γ ⊃ ((K ′ says B) ⊃ A))) ⊃ K says
(Γ ⊃ A)) (Rule (ax), K and (mp))

6. · `G (K says (Γ ⊃ ((K ′ says B) ⊃ A))) ⊃ K says (Γ ⊃ A) (Rule (mp) on 5 and 1)

7. · `G K says (Γ ⊃ A) (Rule (mp) on 6 and 2)

Lemma C.7 (Axiomatic ⇒ Sequent Calculus). `H A implies · K−→ A for each K.

Proof. We induct on the derivation of `H A, and analyze cases on the last rule in the
derivation.

Case.
`H A

`H K ′ says A
nec

1. · K
′
−−→ A (i.h. on premise with K ′)

2. · K−→ K ′ says A (Rule (saysR))

52

Case.
`H A ⊃ B `H A

`H B
mp

1. · K−→ A ⊃ B (i.h. on 1st premise)

2. · K−→ A (i.h. on 2nd premise)

3. A ⊃ B,A K−→ A (Theorem B.3)

4. A ⊃ B,A,B K−→ B (Theorem B.3)

5. A ⊃ B,A K−→ B (Rule (⊃L) on 3 and 4)

6. A K−→ B (Theorem B.2 on 1 and 5)

7. · K−→ B (Theorem B.2 on 2 and 6)

Case.
A is an axiom
`H H

ax

We case analyze all axioms A, in each case showing that · K−→ A. Some representa-
tive cases are shown below (others are straightforward, since they use only the laws of
propositional logic)

Case. (Axiom K) A = (K ′ says (A′ ⊃ B′)) ⊃ ((K ′ says A′) ⊃ (K ′ says B′))

1. K ′ claims (A′ ⊃ B′),K ′ claims A′, A′ ⊃ B′, A′ K
′
−−→ A′ (Theorem B.3)

2. K ′ claims (A′ ⊃ B′),K ′ claims A′, A′ ⊃ B′, A′, B′ K
′
−−→ B′ (Theorem B.3)

3. K ′ claims (A′ ⊃ B′),K ′ claims A′, A′ ⊃ B′, A′ K
′
−−→ B′ (Rule (⊃L))

4. K ′ claims (A′ ⊃ B′),K ′ claims A′
K′
−−→ B′ (Rule (claims) twice)

5. K ′ says (A′ ⊃ B′),K ′ says A′,K ′ claims (A′ ⊃ B′),K ′ claims A′
K−→ K ′ says

B′

(Rule (saysR))

6. K ′ says (A′ ⊃ B′),K ′ says A′
K−→ K ′ says B′ (Rule (saysL) twice)

7. · K−→ (K ′ says (A′ ⊃ B′)) ⊃ ((K ′ says A′) ⊃ (K ′ says B′)) (Rule (⊃R) twice)

Case. (Axiom 4) A = (K ′ says A′) ⊃ K ′ says K ′ says A′

1. K ′ claims A′, A′
K′
−−→ A′ (Theorem B.3)

2. K ′ claims A′
K′
−−→ A′ (Rule (claims))

3. K ′ claims A′
K′
−−→ K ′ says A (Rule (saysR))

4. K ′ says A′,K ′ claims A′
K−→ K ′ says K ′ says A (Rule (saysR))

5. K ′ says A′
K−→ K ′ says K ′ says A (Rule (saysL))

53

6. · K−→ (K ′ says A′) ⊃ K ′ says K ′ says A′ (Rule (⊃R))

Case. (Axiom C) A = K ′ says ((K ′ says A′) ⊃ A′)

1. K ′ says A′,K ′ claims A′, A′
K′
−−→ A′ (Theorem B.3)

2. K ′ says A′,K ′ claims A′
K′
−−→ A′ (Rule (claims))

3. K ′ says A′
K′
−−→ A′ (Rule (saysL))

4. · K
′
−−→ (K ′ says A′) ⊃ A′ (Rule (⊃R))

5. · K−→ K ′ says ((K ′ says A′) ⊃ A′) (Rule (saysR))

Case. (Axiom S) A = (K1 says A′) ⊃ (K2 says A′) and K1 � K2

1. K1 claims A′, A′
K2−−→ A′ (Theorem B.3)

2. K1 claims A′
K2−−→ A′ (Rule (claims); K1 � K2)

3. K1 claims A′,K1 says A′
K−→ K2 says A′ (Rule (saysR); K1 � K2)

4. K1 says A′
K−→ K2 says A′ (Rule (saysL))

5. · K−→ (K1 says A′) ⊃ (K2 says A′) (Rule (⊃R))

Lemma C.8 (Sequent Calculus ⇒ Natural Deduction). Γ K−→ A implies Γ `K A.

Proof. We induct on the derivation of Γ K−→ A and analyze the last rule in the derivation.

Case.
P atomic

Γ, P K−→ P
init

1. Γ, P `K P (Rule (hyp))

Case.
Γ,K claims A,A

K′
−−→ C K � K ′

Γ,K claims A
K′
−−→ C

claims

1. Γ,K claims A,A `K′
C (i.h. on premise)

2. Γ,K claims A `K′
A (Rule (claims); K � K ′)

3. Γ,K claims A `K′
C (Substitution Theorem 3.2 on 2 and 1)

Case.
Γ|K

K−→ A

Γ K′
−−→ K says A

saysR

1. Γ|K `K A (i.h. on premise)

54

2. Γ `K′
K says A (Rule (saysI))

Case.
Γ,K says A,K claims A

K′
−−→ C

Γ,K says A
K′
−−→ C

saysL

1. Γ,K says A,K claims A `K′
C (i.h. on premise)

2. Γ,K says A `K′
K says A (Rule (hyp))

3. Γ,K says A `K′
C (Rule (saysE) on 2 and 1)

Case.
Γ K−→ A Γ K−→ B

Γ K−→ A ∧ B
∧R

1. Γ `K A (i.h. on 1st premise)

2. Γ `K B (i.h. on 2nd premise)

3. Γ `K A ∧ B (Rule (∧R))

Case.
Γ, A ∧ B,A,B K−→ C

Γ, A ∧ B K−→ C
∧L

1. Γ, A ∧ B,A,B `K C (i.h. on premise)

2. Γ, A ∧ B `K A ∧ B (Rule (hyp))

3. Γ, A ∧ B `K A (Rule (∧ E1) on 2)

4. Γ, A ∧ B `K B (Rule (∧ E2) on 2)

5. Γ, A ∧ B,B `K C (Substitution Theorem 3.2 on 3 and 1)

6. Γ, A ∧ B `K C (Substitution Theorem 3.2 on 5 and 4)

Case.
Γ K−→ A

Γ K−→ A ∨ B
∨ R1

1. Γ `K A (i.h. on premise)

2. Γ `K A ∨ B (Rule ∨ I1)

Case.
Γ K−→ B

Γ K−→ A ∨ B
∨ R2

1. Γ `K B (i.h. on premise)

2. Γ `K A ∨ B (Rule ∨ I2)

55

Case.
Γ, A ∨ B,A K−→ C Γ, A ∨ B,B K−→ C

Γ, A ∨ B K−→ C
∨ L

1. Γ, A ∨ B,A `K C (i.h. on 1st premise)

2. Γ, A ∨ B,B `K C (i.h. on 2nd premise)

3. Γ, A ∨ B `K A ∨ B (Rule (hyp))

4. Γ, A ∨ B `K C (Rule (∨E) on 3, 1 and 2)

Case.
Γ K−→ >

>R

1. Γ `K > (Rule (>I))

Case.
Γ,⊥ K−→ C

⊥L

1. Γ,⊥ `K ⊥ (Rule (hyp))

2. Γ,⊥ `K C (Rule (⊥E))

Case.
Γ, A K−→ B

Γ K−→ A ⊃ B
⊃R

1. Γ, A `K B (i.h. on premise)

2. Γ `K A ⊃ B (Rule (⊃I))

Case.
Γ, A ⊃ B K−→ A Γ, A ⊃ B,B K−→ C

Γ, A ⊃ B K−→ C
⊃L

1. Γ, A ⊃ B `K A (i.h. on 1st premise)

2. Γ, A ⊃ B,B `K C (i.h. on 2nd premise)

3. Γ, A ⊃ B `K A ⊃ B (Rule (hyp))

4. Γ, A ⊃ B `K B (Rule (⊃E) on 3 and 1)

5. Γ, A ⊃ B `K C (Substitution Theorem 3.2 on 4 and 2)

Lemma C.9 (Equivalence). The following are equivalent for any Γ, K, and A.

1. Γ `K A in the natural deduction system.

2. Γ K−→ A in the sequent calculus.

56

3. `H K says (Γ ⊃ A) in the axiomatic system.

Proof. We show that (2) => (1) => (3) => (2).

Proof of (2) => (1). Follows immediately from Lemma C.8.

Proof of (1) => (3). Suppose Γ `K A. By Lemma C.6, · `G K says (Γ ⊃ A). By
Theorem C.3, `H K says (Γ ⊃ A).

Proof of (3) => (2). Suppose `H K says (Γ ⊃ A). By Lemma C.7, · K−→ K says (Γ ⊃
A). Now observe that K says (Γ ⊃ A),Γ K−→ A. Hence, by cut (Theorem B.2) we get
Γ K−→ A.

Corollary C.10 (Equivalence; Theorem 3.9). The following are equivalent for any K,
and A.

1. · `K A in the natural deduction system.

2. · K−→ A in the sequent calculus.

3. `H K says A in the axiomatic system.

Proof. Choose Γ = · in Lemma C.9. We get · `K A iff · K−→ A iff `H K says (> ⊃ A). It
only remains to show that `H K says A if and only if `H K says (> ⊃ A).

(“If” direction)

1. `H K says (> ⊃ A) (Assumption)

2. `H > ⊃ ((> ⊃ A) ⊃ >) (Rule (ax) and imp1)

3. `H > (Rule (ax) and true)

4. `H (> ⊃ A) ⊃ > (Rule (mp) on 2 and 3)

5. `H (> ⊃ A) ⊃ (> ⊃ A) (see proof of Theorem C.2.2; case (use))

6. `H ((> ⊃ A) ⊃ >) ⊃ (((> ⊃ A) ⊃ (> ⊃ A)) ⊃ ((> ⊃ A) ⊃ A)) (Rule (ax) and
imp2)

7. `H ((> ⊃ A) ⊃ (> ⊃ A)) ⊃ ((> ⊃ A) ⊃ A) (Rule (mp) on 6 and 4)

8. `H ((> ⊃ A) ⊃ A) (Rule (mp) on 7 and 5)

9. `H K says ((> ⊃ A) ⊃ A) (Rule (nec))

10. `H (K says (> ⊃ A)) ⊃ K says A (Rule (ax), K and (mp) on 9)

11. `H K says A (Rule (mp) on 10 and 1)

(“Only if” direction)

57

1. `H K says A (Assumption)

2. `H A ⊃ (> ⊃ A) (Rule (ax) and imp1)

3. `H K says (A ⊃ (> ⊃ A)) (Rule (nec))

4. `H (K says A) ⊃ K says (> ⊃ A) (Rule (ax), K and (mp) on 3)

5. `H K says (> ⊃ A) (Rule (mp) on 4 and 1)

D Proofs from Section 4

D.1 Soundness

We show here that the Kripke semantics for DTL0 are sound, i.e, if Γ K−→ A, then
M |=K (Γ ⊃ A) in each model M , where Γ is the context Γ reified as a formula, as
defined in Appendix C.2. First, we prove a few preliminary lemmas. As a convention,
we write wK to denote a world w that is visible to K.

Lemma D.1 (Monotonicity). If w |= A and w′ ≥ w, then w′ |= A.

Proof. We induct on A.

Case. A = P (A is atomic)
Suppose w |= P , and w′ ≥ w. We want to show that w′ |= P . By assumption
w |= P , which implies that P ∈ ρ(w). Hence P ∈ ρ(w′) (condition Rho-her). Thus
w′ |= P .

Case. A = > is trivial

Case. A = ⊥
Suppose w |= ⊥ and w′ ≥ w.
To show: w′ |= ⊥.
By assumption w ∈ F . Hence by (F-her), w′ ∈ F . Thus w′ |= ⊥.

Case. A = A1 ∧ A2

Suppose w |= A1 ∧ A2 and w′ ≥ w.
To show: w′ |= A1 ∧ A2.
By assumption, w |= A1 and w |= A2. By i.h., w′ |= A1 and w′ |= A2. Thus by
definition w′ |= A1 ∧ A2, as required.

Case. A = A1 ∨ A2

Suppose w |= A1 ∨ A2 and w′ ≥ w.
To show: w′ |= A1 ∨ A2.
By assumption, w |= A1 or w |= A2. Let us take the case w |= A1 (the other case
is symmetric). By i.h., w′ |= A1. Thus by definition w′ |= A1 ∨ A2, as required.

58

Case. A = A1 ⊃ A2

Suppose w |= A1 ⊃ A2 and w′ ≥ w.
To show: w′ |= A1 ⊃ A2.
Suppose w′′ ≥ w′.
To show: w′′ |= A1 implies w′′ |= A2.
By transitivity of ≥, w′′ ≥ w. By definition of w |= A1 ⊃ A2, w′′ |= A1 implies
w′′ |= A2 as required.

Case. A = K says B
Suppose w |= K says B and w′ ≥ w.
To show: w′ |= K says B.
By assumption w |= K says B, either w ∈ F or w ≤ w′′′ vK w′′ implies w′′ |= A.
If w ∈ F , by (F-her), w′ ∈ F . Hence w′ |= K says B. Otherwise, pick any w4

and w5 such that w′ ≤ w4 vK w5. Clearly, by transitivity of ≤, we also have
w ≤ w4 vK w5. Thus by the assumption w5 |= A as required.

Lemma D.2 (Falsehood). If w |= ⊥, then for any proposition A, w |= A.

Proof. By induction on A.

Case. A = P (A is atomic)
Suppose w |= ⊥
To show: w |= P .
By assumption, w ∈ F . By (F-univ), P ∈ ρ(w). Thus w |= P .

Case. A = > is trivial.

Case. A = ⊥ is trivial.

Case. A = A1 ∧ A2.
Suppose w |= ⊥. By i.h. w |= A1 and w |= A2. Hence by definition of satisfaction,
w |= A1 ∧ A2.

Case. A = A1 ∨ A2.
Suppose w |= ⊥. By i.h. w |= A1. Hence by definition of satisfaction, w |= A1 ∨
A2.

Case. A = A1 ⊃ A2.
Suppose w |= ⊥. Choose any w′ ≥ w. We want to show that w′ |= A implies
w′ |= B. By Lemma D.1, w′ |= ⊥. Hence w′ |= B by i.h., and in particular,
w′ |= A implies w′ |= B.

Case. A = K says B.
Suppose w |= ⊥. Thus by definition, w ∈ F . Hence by definition, w |= K says B.

Theorem D.3 (Soundness). If Γ K−→ A, then for each Kripke model M , M |=K Γ ⊃ A.

59

Proof. We induct on the derivation of Γ K−→ A.

Case.
P atomic

Γ, P K−→ P
init

Pick any w such that K ∈ θ(w). We want to show that w |= (Γ ∧ P) ⊃ P . So
pick any w′ ≥ w. It suffices to show that w′ |= Γ ∧ P implies w′ |= P . But if we
assume that w′ |= Γ ∧ P , then w′ |= P follows by definition of satisfaction.

Case.
Γ,K claims A,A

K′
−−→ C K � K ′

Γ,K claims A
K′
−−→ C

claims

Pick any w (K ′ ∈ θ(w))

To show: w |= (Γ ∧ K says A) ⊃ C
1. Assume any w′ ≥ w

Suffices to show: w′ |= Γ ∧ K says A implies w′ |= C

2. Assume: w′ |= Γ and w′ |= K says A

3. Suffices to show: w′ |= C

4. From i.h.: w′ |= (Γ ∧ (K says A) ∧ A) ⊃ C. (We can apply i.h. since
K ′ ∈ θ(w) and w ≤ w′ imply K ′ ∈ θ(w′))

5. By definition on (4): w′ |= Γ and w′ |= K says A and w′ |= A implies w′ |= C

6. From (2), w′ |= K says A. Also, K ′ ∈ θ(w′). Hence, by (View-close),
K ∈ θ(w′). By (Imp-refl) and (Mod-refl), w′ ≤ w′ vK w′. By definition
of satisfaction, either w′ ∈ F , or w′ |= A. In the former case, w′ |= A by
Lemma D.2. Thus w′ |= A.

7. From (2), (6) and (5) , w′ |= C as required in (3).

Case.
Γ|K

K−→ A

Γ K′
−−→ K says A

saysR

Pick any w such that K ′ ∈ θ(w).

To show: w |= Γ ⊃ K says A.

1. Assume any w′ ≥ w
Suffices to show: w′ |= Γ implies w′ |= K says A

2. Assume w′ |= Γ.

3. Suffices to show: w′ |= K says A

4. Assume w′ 6∈ F , and pick any w′′, w′′′ such that w′ ≤ w′′ vK w′′′

(Note: K ∈ θ(w′′′)).
5. Suffices to show: w′′′ |= A

6. Let Γ|K = K1 claims B1, . . . ,Kn claims Bn.
(Note: Ki � K for each i)

7. By i.h., w′′′ |= (K1 says B1 ∧ . . . ∧ Kn says Bn) ⊃ A
(we can apply i.h. because K ∈ θ(w′′′))

60

8. By definition on (7), w′′′ |= Ki says Bi for all i implies w′′′ |= A

9. From (5) and (7), suffices to show that w′′′ |= Ki says Bi for each i.

10. Choose any w′′′ ≤ w4 vKi w5. Suffices to show: w5 |= Bi. (Note: K ∈ θ(w4)
by (View-closure))

11. From (4) and (10), we have w′′ vK w′′′ ≤ w4. By (Commutativity), w′′ vK
w4. By (Mod-closure), w′′ vKi w4.

12. We now obtain w′ ≤ w′′ vKi w4 vKi w5.

13. From (12), and (Mod-trans), w′ ≤ w′′ vKi w5.

14. Since w′ |= K says Bi (assumption 2), and w′ 6∈ F (assumption 4), by
definition of satisfaction, w5 |= Bi, as required in (10).

Case.
Γ,K says A,K claims A

K′
−−→ C

Γ,K says A
K′
−−→ C

saysL

We want to show that if wK
′
, then w |= (Γ ∧ K says A) ⊃ C. Equivalently,

for any w′ ≥ w, w′ |= Γ ∧ K says A implies w′ |= A. By i.h., w′ |= Γ ∧
K says A ∧ K says A implies w′ |= A. However, w′ |= Γ ∧ K says A and
w′ |= Γ ∧ K says A ∧ K says A are equivalent by definition.

Case.
Γ K−→ A Γ K−→ B

Γ K−→ A ∧ B
∧R

Suppose wK is a world. We want to show that w |= Γ ⊃ (A ∧ B). Pick any w′ ≥ w
and assume that w′ |= Γ. It suffices to show that w′ |= A ∧ B, or equivalently
that w′ |= A and that w′ |= B. This follows immediately by i.h. (since K ∈ θ(w′))

Case.
Γ, A ∧ B,A,B K−→ C

Γ, A ∧ B K−→ C
∧L

Suppose wK is a world. Pick any w′ ≥ w. It suffices to show that w′ |= Γ ∧ A ∧ B
implies that w′ |= C. This follows immediately by the i.h. (since K ∈ θ(w′)).

Case.
Γ K−→ A

Γ K−→ A ∨ B
∨ R1

Suppose wK is a world. Pick any w′ ≥ w. It suffices to show that w′ |= Γ implies
that w′ |= A ∨ B. Assume w′ |= Γ. By i.h., w′ |= Γ implies w′ |= A. Hence
w′ |= A. By definition of satisfaction, w′ |= A ∨ B as required.

Case.
Γ K−→ B

Γ K−→ A ∨ B
∨ R2

Similar to the previous case.

Case.
Γ, A ∨ B,A K−→ C Γ, A ∨ B,B K−→ C

Γ, A ∨ B K−→ C
∨ L

Suppose wK is a world. Pick any w′ ≥ w. We want to show that w′ |= Γ ∧ (A ∨ B)

61

implies w′ |= C. Suppose that w′ |= Γ ∧ (A ∨ B). By definition, w′ |= Γ and
either w′ |= A or w′ |= B. Suppose that w′ |= A (the other case is similar). By
i.h. on first premise, w′ |= Γ and w′ |= A imply w′ |= C. It follows immediately
that w′ |= C as required.

Case.
Γ K−→ >

>R

Pick any wK . We want to show for any w′ ≥ w that w′ |= Γ implies w′ |= >.
However, w′ |= > is always true by definition.

Case.
Γ,⊥ K−→ C

⊥L

Pick any wK . We want to show for any w′ ≥ w that w′ |= Γ ∧ ⊥ implies w′ |= C.
Assume that w′ |= Γ ∧ ⊥. In particular, w′ |= ⊥. By Lemma D.2, w′ |= C, as
required.

Case.
Γ, A K−→ B

Γ K−→ A ⊃ B
⊃R

Pick any wK , and any w′ ≥ w. It suffices to show that w′ |= Γ implies w′ |= A ⊃ B.
To show this pick any w′′ ≥ w′, assume that w′′ |= A and observe that it suffices
to show that w′′ |= B. Now from Lemma D.1, it follows that w′′ |= Γ. Hence
w′′ |= Γ ∧ A. From i.h., w′′ |= B as required.

Case.
Γ, A ⊃ B K−→ A Γ, A ⊃ B,B K−→ C

Γ, A ⊃ B K−→ C
⊃L

Pick any wK and w′ ≥ w. We want to show that w′ |= Γ ∧ (A ⊃ B) implies
w′ |= C. Assume that w′ |= Γ and that w′ |= A ⊃ B. From i.h. (1) it follows that
w′ |= A. Hence w′ |= B. Now from i.h. (2), w′ |= C as required.

D.2 Canonical Kripke Model and Completeness

In this section, we provide proofs of Lemmas and Theorems from Section 4.1.

Lemma D.4 (Canonical Model; Lemma 4.8). The model constructed in Definition 4.7
is a Kripke model for DTL0, i.e., it satisfies all conditions of Definition 4.1.

Proof. We verify all the conditions from Definition 4.1.

• (View-closure) Suppose K ∈ θ(Γ, S) = S. Now by (Prin-closure), there is a
principal K0 such that S = {K | K � K0}. It follows that K � K0. Now suppose
K ′ � K. By the fact that � is a pre-order, K ′ � K0. Thus K ′ ∈ S = θ(Γ, S), as
required.

• (Imp-mon) By definition, (Γ, S) ≤ (Γ′, S′) implies S ⊆ S′, i.e., θ(Γ, S) ⊆ θ(Γ′, S′).

• (Imp-refl) and (Imp-trans) follow by definition of ≤ in the canonical model.

62

• (Mod-refl) Let w = (Γ, S) and K ∈ S. We want to show that (Γ, S) vK (Γ, S).
For this, we need to show that K says A ∈ Γ implies A ∈ Γ. This follows from the
condition (Fact-closure) because K says A

K−→ A in the sequent calculus.

• (Mod-trans) Let (Γ1, S1) vK (Γ2, S2) vK (Γ3, S3). We want to show that K says
A ∈ S1 implies A ∈ S3. By condition (Prin-closure), there is at least one element
in S1, say K1. Now observe that K says A

K1−−→ K says K says A. Hence K says
A ∈ Γ1 implies (by Fact-closure) that K says K says A ∈ Γ1, which implies (by
definition of vK) that K says A ∈ Γ2, which further implies that A ∈ Γ3.

• (Mod-closure) Let (Γ1, S1) vK (Γ2, S2) andK ′ � K. We want to show (Γ1, S1) vK′

(Γ2, S2). Clearly, K ′ ∈ S2 because K ∈ S2. Pick any K ′ says B ∈ Γ1. We need
to show B ∈ Γ2. However, K ′ says B

K0−−→ K says B for any K0 ∈ S1. Thus by
(Fact-closure), K says B ∈ Γ1. Hence by definition of vK , B ∈ Γ2 as required.

• (Rho-her) Let P ∈ ρ(Γ1, S1) (i.e., P ∈ Γ1) and (Γ1, S1) ≤ (Γ2, S2). By definition of
≤ in the canonical model, Γ1 ⊆ Γ2. Thus P ∈ Γ2, or equivalently, P ∈ ρ(Γ2, S2).

• (F-her) Let (Γ1, S1) ∈ F (i.e., ⊥ ∈ Γ1) and (Γ1, S1) ≤ (Γ2, S2). By definition of ≤
in the canonical model, Γ1 ⊆ Γ2. Thus ⊥ ∈ Γ2, or equivalently, (Γ2, S2) ∈ F .

• (F-univ) Let (Γ, S) ∈ F . By definition, ⊥ ∈ Γ. By condition (Prin-closure), there
is at least one principal, say K, in S. Also, ⊥ K−→ P in the sequent calculus.
Therefore, by condition (Fact-closure), P ∈ Γ, or equivalently, P ∈ ρ(Γ, S).

• (Commutativity) Suppose (Γ1, S1) vK (Γ2, S2) ≤ (Γ3, S3). We want to show that
(Γ1, S1) vK (Γ3, S3). Since K ∈ S2 and S2 ⊆ S3, K ∈ S3. Also, K says A ∈ Γ1

implies (by definition of vK) that A ∈ Γ2 which in turn implies A ∈ Γ3 (since
Γ2 ⊆ Γ3).

Lemma D.5 (Consistent Extensions; Lemma 4.9). Let (Γ, S) be an A consistent theory.
Then there is an A consistent prime theory (Γ∗, S) such that Γ ⊆ Γ∗.

Proof. We use Zorn’s lemma. Let us define the set S of theories as follows: S =
{(Γ′, S) | Γ′ ⊇ Γ, ∀K ∈ S. Γ′ 6 K−→ A}. We make the set a partial order by defining
(Γ′, S) ≤ (Γ′′, S) if Γ′ ⊆ Γ′′. Clearly S is non-empty since (Γ, S) ∈ S. Now take any
chain (Γ1, S) ≤ (Γ2, S) ≤ . . . in S. Clearly (∪Γi, S) is an upper bound on this chain. We
show that (∪Γi, S) ∈ S. First, clearly ∪Γi ⊇ Γ since each Γi ⊇ Γ. Second, ∪Γi 6

K−→ A for
any K ∈ S. To see this, assume (for the sake of contradiction) that ∪Γi

K−→ A for some
K ∈ S. Then there is a finite subset Γ′ of ∪Γi such that Γ′ K−→ A. Since Γ′ is finite,
there must be some n such that Γ′ ⊆ Γn. Clearly then Γn

K−→ A, thus violating the fact
that (Γn, S) ∈ S. Hence, ∪Γi 6

K−→ A. And therefore, (∪Γi, S) ∈ S.
By Zorn’s lemma, S has a maximal element. Let this element be (Γ∗, S). By

definition of S, Γ∗ 6 K−→ A for any K ∈ S, so that (Γ∗, S) is A consistent. We now show
that (Γ∗, S) is a prime theory. To do this, we verify the (Fact-closure) and (Primality)
conditions. (The condition (Prin-closure) holds because we assume that S is a filter).

63

• (Fact-closure) Suppose for the sake of contradiction that Γ∗ K−→ C for some K ∈ S,
but C 6∈ Γ∗. Let K0 be a minimum element of S (this exists because S is a filter).
Clearly Γ∗, C 6 K0−−→ A. (If not, then Γ∗, C K0−−→ A and Γ∗ K−→ C would imply Γ∗ K0−−→ A
by Theorems B.1 and B.2, thus contradicting the A consistency of (Γ∗, S).) It
follows that for any K ∈ S, Γ∗, C 6 K−→ A. Thus (Γ∗∪{C}, S) ∈ S. This contradicts
the maximality of (Γ∗, S).

• (Primality) Suppose for the sake of contradiction that B ∨ C ∈ Γ∗ and B,C 6∈ Γ∗.
Consider the theories (Γ∗ ∪ {B}, S) and (Γ∗ ∪ {C}, S). We claim that at least one
of these is A consistent. Suppose on the contrary that both are A inconsistent.
Then Γ∗, B K1−−→ A and Γ∗, C K2−−→ A for some K1,K2 ∈ S. Thus Γ∗, B ∨ C K0−−→ A,
where K0 is a least element of S. Further, since B ∨ C ∈ Γ∗, we would obtain
Γ∗ K0−−→ A, thus violating the A consistency of (Γ∗, S). Hence at least one of the
theories (Γ∗ ∪ {B}, S) and (Γ∗ ∪ {C}, S) is A consistent. Assume without loss of
generality that (Γ∗ ∪ {B}, S) is A consistent. Then clearly, (Γ∗ ∪ {B}, S) ∈ S,
which violates the maximality of (Γ∗, S). Thus at least one of B and C must be
in Γ∗, as required.

Lemma D.6 (Satisfaction; Lemma 4.10). For each formula A, and each prime theory
(Γ, S), it is the case that (Γ, S) |= A in the canonical model iff A ∈ Γ.

Proof. We induct on A.

Case. A = P (A is atomic).

(Γ, S) |= P iff P ∈ ρ(Γ, S) iff P ∈ Γ.

Case. A = B ∧ C.

Suppose B ∧ C ∈ Γ. We want to show that (Γ, S) |= B ∧ C. By (Fact-closure) on
the theory (Γ, S), B ∈ Γ and C ∈ Γ. Hence by the i.h., (Γ, S) |= B and (Γ, S) |= C.
It follows then that (Γ, S) |= B ∧ C.

Conversely suppose that (Γ, S) |= B ∧ C. By definition (Γ, S) |= B and (Γ, S) |=
C. By i.h., B,C ∈ Γ. By (Fact-closure), B ∧ C ∈ Γ.

Case. A = B ∨ C.

Suppose B ∨ C ∈ Γ. We want to show that (Γ, S) |= B ∨ C. By the (Primality)
condition on (Γ, S), either B ∈ Γ or C ∈ Γ. Assume the former (the other case is
similar). Then by i.h., (Γ, S) |= B. Hence by definition, (Γ, S) |= B ∨ C.

Conversely, suppose that (Γ, S) |= B ∨ C. By definition, either (Γ, S) |= B or
(Γ, S) |= C. Assume the former (the other case is similar). Then by i.h., B ∈ Γ.
Hence by (Fact-closure), B ∨ C ∈ Γ.

Case. A = >.

Suppose > ∈ Γ. Then trivially, (Γ, S) |= >.

Conversely, suppose (Γ, S) |= >. Since Γ K−→ > for any K, > ∈ Γ by (Fact-closure).

64

Case. A = ⊥.

(Γ, S) |= ⊥ iff (Γ, S) ∈ F iff ⊥ ∈ Γ.

Case. A = B ⊃ C
Suppose B ⊃ C ∈ Γ. Pick any (Γ′, S′) ≥ (Γ, S). We want to show that (Γ′, S′) |= B
implies (Γ′, S′) |= C. Assume (Γ′, S′) |= B. By i.h., B ∈ Γ′. Also, by definition,
Γ′ ⊇ Γ. Hence, B ⊃ C ∈ Γ′. Clearly B,B ⊃ C

K−→ C for any K ∈ S′. Thus by
(Fact-closure) on (Γ′, S′), it must be the case that C ∈ Γ′. By i.h., (Γ′, S′) |= C,
as required.

Conversely, suppose that (Γ, S) |= B ⊃ C. We want to show that B ⊃ C ∈ Γ.
Assume for the sake of contradiction that B ⊃ C 6∈ Γ, and pick any K ∈ S. Due to
(Fact-closure), it must be the case that Γ 6 K−→ B ⊃ C. It follows immediately (from
basic properties of the sequent calculus) that Γ, B 6 K−→ B ⊃ C. Thus (Γ ∪ {B}, S)
is B ⊃ C consistent. By Lemma D.5, there is a prime theory w = (Γ∪{B}∪Γ′, S)
which is B ⊃ C consistent. Now by i.h., w |= B. Also, since w ≥ (Γ, S), and
(Γ, S) |= B ⊃ C, we obtain w |= C. By i.h., C ∈ Γ∪ {B} ∪ Γ′. Since C K−→ B ⊃ C
for any K, it follows by (Fact-closure) on w that B ⊃ C ∈ Γ ∪ {B} ∪ Γ′, which
violates the B ⊃ C consistency of (Γ ∪ {B} ∪ Γ′, S). It follows therefore, that
B ⊃ C ∈ Γ, as required.

Case. A = K says B

Suppose K says B ∈ Γ. We want to show that (Γ, S) |= K says B. So pick
any sequence: (Γ, S) ≤ (Γ′, S′) vK (Γ′′, S′′), where K ∈ S′′. Since Γ ⊆ Γ′,
K says B ∈ Γ′. By definition of vK in canonical models, B ∈ Γ′′. Hence by
i.h., (Γ′′, S′′) |= B. Since Γ′,Γ′′, S′, S′′ are arbitrary, by definition of satisfaction it
follows that (Γ, S) |= K says B.

Conversely, suppose that (Γ, S) |= K says B. We want to show that K says B ∈ Γ.
If ⊥ ∈ Γ, this is trivial due to the closure condition. Hence we may assume that
⊥ 6∈ Γ. Let SK = {K ′ | K ′ � K}. Now consider the theory (Γ|K , SK)9. We
claim that this theory is not B consistent. Suppose on the contrary that it is B
consistent. Then by Lemma D.5, there is a larger prime theory (Γ′, SK) that is
B consistent (Γ′ ⊇ Γ|K). Observe that (Γ, S) ≤ (Γ, S) vK (Γ′, SK). The first
relation is trivial. To prove that (Γ, S) vK (Γ′, SK), pick any K ′ says C ∈ Γ,
where K ′ � K. We will show that C ∈ Γ′. Since K ′ says C ∈ Γ, K ′ says C ∈ Γ|K .
Hence, K ′ says C ∈ Γ′. Now observe that K ′ says C

K−→ C. So by (Fact-closure)
on (Γ′, SK), C ∈ Γ′. Hence (Γ, S) ≤ (Γ, S) vK (Γ′, SK).

Next, from the assumption that (Γ, S) |= K says B and the fact that ⊥ 6∈ Γ (so
that (Γ, S) is not fallible), we must have (Γ′, SK) |= B. By i.h., B ∈ Γ′. This
immediately violates the fact that (Γ′, SK) is B consistent. Thus (Γ|K , SK) is

not B consistent. Therefore there is some K ′ ∈ SK such that Γ|K
K′
−−→ B. Since

K ′ � K, it follows from Theorem B.1 that Γ|K
K−→ B. Thus Γ K′′

−−→ K says B for
any K ′′ ∈ S. Thus by (Fact-closure) on (Γ, S), K says B ∈ Γ.

9Γ|K is defined here as {(K′ says A) ∈ Γ | K′ � K}

65

Theorem D.7 (Soundness and Completeness; Theorem 4.3). · K−→ A if and only if for
each Kripke model M , M |=K A.

Proof. Suppose · K−→ A. Then by Theorem D.3, M |=K > ⊃ A. Hence, M |=K A.
Conversely, suppose that for each model M , M |=K A. Then, in particular for each wK

in the canonical model w |= A. By Theorem 4.11, · K−→ A (else there must be a world
wK such that w 6|= A).

E Proofs from Section 5.1

In this appendix we prove that the translation from DTL0 to CS4m is correct (Theo-
rem 5.2). First, we develop the axiomatic system for CS4m.

E.1 The Axiomatic System for CS4m

In Section 5.1, we listed the axioms and rules of CS4m that are specific to the modality
�K . Below we list all the rules and axioms of CS4m.

` A
` �KA

nec
` A ⊃ B ` A

` B
mp

A is an axiom
` A

ax

Axioms:

(�K(A ⊃ B)) ⊃ ((�KA) ⊃ (�KB)) (K)
(�KA) ⊃ �K �K A (4)
(�KA) ⊃ A (T)
(�KA) ⊃ �K′A if K � K ′ (S)
A ⊃ (B ⊃ A) (imp1)
(A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)) (imp2)
A ⊃ (B ⊃ (A ∧ B)) (conj1)
(A ∧ B) ⊃ A (conj2)
(A ∧ B) ⊃ B (conj3)
A ⊃ (A ∨ B) (disj1)
B ⊃ (A ∨ B) (disj2)
(A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)) (disj3)
> (true)
⊥ ⊃ A (false)

Next, we generalize the axiomatic system, adding hypothetical reasoning, as we did
for the axiomatic system of DTL0 (Appendix C). We write Γ `G A to mean that A
follows from the formulas in Γ. The rules of deduction are:

Γ, A `G A
use

· `G A
Γ `G �KA

nec
Γ `G A ⊃ B Γ `G A

Γ `G B
mp

A is an axiom
Γ `G A

ax

As for DTL0, we prove some elementary properties for the generalized system of
CS4m, and show also that the generalized system and axiomatic system are equivalent.

66

Lemma E.1 (Basic properties). The following hold.

1. (Weakening) Γ `G A implies Γ,Γ′ `G A

2. (Substitution) Γ `G A and Γ, A `G B imply Γ `G B

Proof. Exactly as for DTL0 in Lemma C.1, since the proof does not rely on the specific
axioms used.

Theorem E.2 (Deduction). The following hold.

1. Γ `G A ⊃ B implies Γ, A `G B

2. Γ, A `G B implies Γ `G A ⊃ B

Proof. Exactly as for DTL0 in Theorem C.2. The proof does not rely on the axiom (C),
which is the only axiom present in DTL0 that is not present in CS4m.

Theorem E.3 (G iff Axiomatic). ` A if and only if · `G A

Proof. In each direction by straightforward induction on the given derivation.

E.2 Proof of Soundness

Next we prove soundness of the translation, · K−→ A in DTL0 implies ` O ⊃ (K ⊃ pAq)
in CS4m. Instead of establishing exactly this statement, we modify it slightly to make
our induction easier.

Lemma E.4 (Soundness of Translation). If `H A in DTL0’s axiomatic system, then
O `G pAq in CS4m’s generalized axiomatic system.

Proof. We induct on the given derivation of `H A, case analyzing the last rule. (We
remind the reader that the rules for the judgment `H are listed in Appendix C.)

Case.
`H A

`H K says A
nec

Let O = �`(K1A ⊃ K1B), . . . ,�`(KnA ⊃ KnB).

1. O `G pAq (i.h. on premise)

2. O,K `G pAq (Weakening, Lemma E.1.1)

3. · `G O ⊃ (K ⊃ pAq) (Theorem E.2)

4. · `G �K(O ⊃ (K ⊃ pAq)) (Rule (nec))

5. · `G (�KO) ⊃ �K(K ⊃ pAq) (Rule (ax), (K), and rule (mp))

6. �K �` (K1A ⊃ K1B), . . . ,�K �` (KnA ⊃ KnB) `G �K(K ⊃ pAq) (Theorem E.2)

7. · `G (�`(KiA ⊃ KiB)) ⊃ �` �` (KiA ⊃ KiB) (Rule (ax) and (4))

8. �`(KiA ⊃ KiB) `G �` �` (KiA ⊃ KiB) (Theorem E.2)

67

9. · `G (�` �` (KiA ⊃ KiB)) ⊃ �K �` (KiA ⊃ KiB) (Rule (ax) and (S))

10. �` �` (KiA ⊃ KiB) `G �K �` (KiA ⊃ KiB) (Theorem E.2)

11. �`(KiA ⊃ KiB) `G �K �` (KiA ⊃ KiB) (Lemma E.1.2 on 8 and 10)

12. O `G �K(K ⊃ pAq) (Lemma E.1.2 on 11 and 6)

Case.
`H A ⊃ B `H A

`H B
mp

1. O `G pAq ⊃ pBq (i.h. on 1st premise)

2. O `G pAq (i.h. on 2nd premise)

3. O `G pBq (Rule (mp))

Case.
A is an axiom
`H A

ax

We case analyze the axioms.

Case. (Axiom K) A = (K ′ says (A′ ⊃ B′)) ⊃ ((K ′ says A′) ⊃ (K ′ says B′))

1. O `G (�K′((K ′ ⊃ pA′q) ⊃ (K ′ ⊃ pB′q))) ⊃ ((�K′(K ′ ⊃ pA′q)) ⊃ (�K′(K ′ ⊃
pB′q))) (Rule (ax) and (K))

2. O,�K′((K ′ ⊃ pA′q) ⊃ (K ′ ⊃ pB′q)) `G ((�K′(K ′ ⊃ pA′q)) ⊃ (�K′(K ′ ⊃
pB′q))) (Theorem E.2)

3. · `G (K ′ ⊃ (pA′q ⊃ pB′q)) ⊃ ((K ′ ⊃ pA′q) ⊃ (K ′ ⊃ pB′q))
(Basic propositional theorem)

4. · `G (�K′(K ′ ⊃ (pA′q ⊃ pB′q))) ⊃ �K′((K ′ ⊃ pA′q) ⊃ (K ′ ⊃ pB′q))
(Rule (ax), (K) and rule (mp))

5. �K′(K ′ ⊃ (pA′q ⊃ pB′q)) `G �K′((K ′ ⊃ pA′q) ⊃ (K ′ ⊃ pB′q))
(Theorem E.2)

6. O,�K′(K ′ ⊃ (pA′q ⊃ pB′q)) `G ((�K′(K ′ ⊃ pA′q)) ⊃ (�K′(K ′ ⊃ pB′q)))
(Lemma E.1.2 on 5 and 2)

7. O `G (�K′(K ′ ⊃ (pA′q ⊃ pB′q))) ⊃ ((�K′(K ′ ⊃ pA′q)) ⊃ (�K′(K ′ ⊃
pB′q)))

(Theorem E.2)

Case. (Axiom 4) A = (K ′ says A′) ⊃ K ′ says K ′ says A′

1. · `G (�K′(K ′ ⊃ pA′q)) ⊃ �K′ �K′ (K ′ ⊃ pA′q) (Rule (ax) and 4)

2. �K′(K ′ ⊃ pA′q) `G �K′ �K′ (K ′ ⊃ pA′q) (Theorem E.2)

3. · `G (�K′(K ′ ⊃ pA′q)) ⊃ (K ′ ⊃ (�K′(K ′ ⊃ pA′q))) (Rule (ax) and (imp1))

4. · `G �K′((�K′(K ′ ⊃ pA′q)) ⊃ (K ′ ⊃ (�K′(K ′ ⊃ pA′q)))) (Rule (nec))

68

5. · `G (�K′ �K′ (K ′ ⊃ pA′q)) ⊃ �K′(K ′ ⊃ (�K′(K ′ ⊃ pA′q)))
(Rule (ax), (K) and rule (mp))

6. �K′ �K′ (K ′ ⊃ pA′q) `G �K′(K ′ ⊃ (�K′(K ′ ⊃ pA′q))) (Theorem E.2)
7. �K′(K ′ ⊃ pA′q) `G �K′(K ′ ⊃ (�K′(K ′ ⊃ pA′q))) (Lemma E.1.2 on 2 and

6)
8. · `G (�K′(K ′ ⊃ pA′q)) ⊃ �K′(K ′ ⊃ (�K′(K ′ ⊃ pA′q))) (Theorem E.2)
9. O `G (�K′(K ′ ⊃ pA′q)) ⊃ �K′(K ′ ⊃ (�K′(K ′ ⊃ pA′q)))

(Weakening, Lemma E.1.1)

Case. (Axiom C) A = K ′ says ((K ′ says A′) ⊃ A′)

1. �K′(K ′ ⊃ pA′q),K ′ `G (�K′(K ′ ⊃ pA′q)) ⊃ (K ′ ⊃ pA′q)
(Rule (ax) and (T))

2. �K′(K ′ ⊃ pA′q),K ′ `G �K′(K ′ ⊃ pA′q) (Rule (use))
3. �K′(K ′ ⊃ pA′q),K ′ `G K ′ ⊃ pA′q (Rule (mp))
4. �K′(K ′ ⊃ pA′q),K ′ `G K ′ (Rule (use))
5. �K′(K ′ ⊃ pA′q),K ′ `G pA′q (Rule (mp))
6. · `G K ′ ⊃ ((�K′(K ′ ⊃ pA′q)) ⊃ pA′q) (Theorem E.2)
7. · `G �K′(K ′ ⊃ ((�K′(K ′ ⊃ pA′q)) ⊃ pA′q)) (Rule (nec))
8. O `G �K′(K ′ ⊃ ((�K′(K ′ ⊃ pA′q)) ⊃ pA′q)) (Weakening, Lemma E.1.1)

Case. (Axiom S) A = (K ′1 says A′) ⊃ (K ′2 says A′)

1. · `G (K ′2 ⊃ K ′1) ⊃ ((K ′1 ⊃ pA′q) ⊃ (K ′2 ⊃ pA′q))
(Basic propositional theorem)

2. · `G �K′
2
((K ′2 ⊃ K ′1) ⊃ ((K ′1 ⊃ pA′q) ⊃ (K ′2 ⊃ pA′q))) (Rule (nec))

3. · `G (�K′
2
(K ′2 ⊃ K ′1)) ⊃ ((�K′

2
(K ′1 ⊃ pA′q)) ⊃ �K′

2
(K ′2 ⊃ pA′q))

(Rule (ax), (K), and rule (mp))
4. �K′

2
(K ′2 ⊃ K ′1),�K′

2
(K ′1 ⊃ pA′q) `G �K′

2
(K ′2 ⊃ pA′q) (Theorem E.2)

5. · `G (�`(K ′2 ⊃ K ′1)) ⊃ �K′
2
(K ′2 ⊃ K ′1) (Rule (ax) and (S))

6. �`(K ′2 ⊃ K ′1) `G �K′
2
(K ′2 ⊃ K ′1) (Theorem E.2)

7. · `G (�K′
1
(K ′1 ⊃ pA′q)) ⊃ �K′

2
(K ′1 ⊃ pA′q) (Rule (ax) and (S))

8. �K′
1
(K ′1 ⊃ pA′q) `G �K′

2
(K ′1 ⊃ pA′q) (Theorem E.2)

9. �`(K ′2 ⊃ K ′1),�K′
2
(K ′1 ⊃ pA′q) `G �K′

2
(K ′2 ⊃ pA′q)

(Lemma E.1.2 on 6 and 4)
10. �`(K ′2 ⊃ K ′1),�K′

1
(K ′1 ⊃ pA′q) `G �K′

2
(K ′2 ⊃ pA′q)

(Lemma E.1.2 on 8 and 9)
11. �`(K ′2 ⊃ K ′1) `G (�K′

1
(K ′1 ⊃ pA′q)) ⊃ �K′

2
(K ′2 ⊃ pA′q) (Theorem E.2)

12. O `G (�K′
1
(K ′1 ⊃ pA′q)) ⊃ �K′

2
(K ′2 ⊃ pA′q) (Weakening, Lemma E.1.1)

The remaining cases are straightforward.

69

E.3 Proof of Completeness

Our proof of completeness of the translation from DTL0 to CS4m is semantic, and uses
Kripke models of DTL0 described in Section 4 and Appendix D. At a high level, the
steps in the proof are the following. First we define an interpretation of the formulas
of CS4m in Kripke models of DTL0, and show that the interpretation is sound. This is
rather unusual, and works because the logics DTL0 and CS4m are quite similar. Next
we show that for any DTL0 formula A, it is the case that |= pAq in this interpretation
if and only if |= A in the usual Kripke interpretation of DTL0. Then, completeness of
the translation follows from completeness of DTL0 with respect to its Kripke models
(Theorem D.7).

Definition E.5 (Kripke Interpretation of CS4m). Let (W, θ,≤, (vK)K∈Prin, ρ, F) be a
Kripke model for DTL0. Then for CS4m formulas, we define satisfaction at a world w
by induction on formulas as follows:

w |= P iff P ∈ ρ(w).

w |= K iff w ∈ F or K ∈ θ(w).

w |= A ∧ B iff w |= A and w |= B.

w |= A ∨ B iff w |= A or w |= B.

w |= >.

w |= ⊥ iff w ∈ F .

w |= A ⊃ B iff for all w′, w ≤ w′ and w′ |= A imply w′ |= B.

w |= �KA iff either w ∈ F or (for all w′, w′′, w ≤ w′ vK w′′ implies w′′ |= A, and
for all w′, w ≤ w′ implies w′ |= A).

Lemma E.6 (Monotonicity). For any CS4m formula A, w |= A and w ≤ w′ imply
w′ |= A.

Proof. By induction on A. Most cases work as for the proof of Lemma D.1. The only
new cases here are A = K and A = �KA′.

Case. A = K. Since w |= K, w ∈ F or K ∈ θ(w). In the former case, by condition
(F-her), w′ ∈ F . Thus w′ |= K. In the latter case, by condition (Imp-mon), K ∈ θ(w′).
Thus w′ |= K.

Case. A = �KA′. We need to show that w′ |= �KA′. We assume that w 6∈ F , because
otherwise w′ ∈ F by (F-her), and trivially we would have w′ |= �KA′. Pick any w2, w3

such that w′ ≤ w2 vK w3. Clearly, w ≤ w2 vK w3. Hence by assumptions w |= �KA′
and w 6∈ F , we get w3 |= A′. Next, pick any w′′ ≥ w′. Clearly, w ≤ w′′. Hence by
assumptions w |= �KA′ and w 6∈ F , we get w′′ |= A′. Thus w′ |= �KA′.

Lemma E.7 (Falsehood). For any CS4m formula A, w |= ⊥ implies w |= A.

70

Proof. Exactly like that of lemma D.2.

As for DTL0, given a Kripke model M we say that M |= A if for each w ∈ M ,
w |= A. This interpretation is sound in the following sense.

Lemma E.8 (Soundness of Interpretation). If ` A in CS4m, then for each DTL0 Kripke
model M , M |= A.

Proof. Pick any model M . We induct on the derivation of ` A in CS4m to show that
for each w ∈M , w |= A. We case analyze the last rule in the derivation of ` A.

Case.
` A
` �KA

nec

Pick any w′, w′′ such that w ≤ w′ vK w′′. By i.h., w′′ |= A. Next, pick any w′ such
that w ≤ w′. By i.h., w′ |= A. Thus by definition of satisfaction, w |= �KA.

Case.
` A ⊃ B ` A

` B
mp

1. w |= A ⊃ B (i.h. on 1st premise)

2. w |= A (i.h. on 2nd premise)

3. w ≤ w (Reflexivity of ≤)

4. w |= A implies w |= B (Defn. of satisfaction, 1, 3)

5. w |= B (2, 4)

Case.
A is an axiom

` A
ax

We analyze the possible axioms A.

Case. (Axiom K) A = (�K′(A′ ⊃ B′)) ⊃ ((�K′A′) ⊃ (�K′B′))

Pick any w′ ≥ w, and assume that w′ |= �K′(A′ ⊃ B′). It suffices to show that
w′ |= (�K′A′) ⊃ (�K′B′). Now pick any w′′ ≥ w′ and assume that w′′ |= �K′A′.
Then it suffices to show that w′′ |= �K′B′. We may assume that w,w′, w′′ 6∈ F
because otherwise, by condition (F-her), w′′ ∈ F , and trivially we would have
w′′ |= �K′B′.

Pick w3, w4 such that w′′ ≤ w3 vK′ w4. Observe that w′ ≤ w3 vK′ w4. From
assumptions w′ |= �K′(A′ ⊃ B′) and w′ 6∈ F it follows that w4 |= A′ ⊃ B′.
Similarly, from assumptions w′′ |= �K′A′ and w′′ 6∈ F it follows that w4 |= A′.
Clearly, then w4 |= B′.

Next pick w3 such that w′′ ≤ w3. Observe that w′ ≤ w3. From assumptions
w′ |= �K′(A′ ⊃ B′) and w′ 6∈ F it follows that w3 |= A′ ⊃ B′. Similarly, from
assumptions w′′ |= �K′A′ and w′′ 6∈ F it follows that w3 |= A′. Thus w3 |= B′.

It follows from the definition of satisfaction for �K′B′ that w′′ |= �K′B′.

71

Case. (Axiom 4) A = (�K′A′) ⊃ �K′ �K′ A′

Pick any w′ ≥ w, and assume that w′ |= �K′A′. It suffices to show that w′ |=
�K′ �K′ A′. We may assume that w′ 6∈ F because otherwise w′ |= �K′ �K′ A′

trivially by definition of satisfaction.

Pick any w2, w3 such that w′ ≤ w2 vK′ w3. We must show that w3 |= �K′A′. So
pick any w4, w5 such that w3 ≤ w4 vK′ w5. We must show that w5 |= A′. Observe
that w′ ≤ w2 vK′ w3 ≤ w4 vK′ w5. By (commutativity), w′ ≤ w2 vK′ w4 vK′ w5.
By (mod-trans), w′ ≤ w2 vK′ w5. It follows from assumptions w′ |= �K′A′ and
w′ 6∈ F that w5 |= A′. Next, pick any w4 such that w3 ≤ w4. We must show
that w4 |= A′. Observe that w′ ≤ w2 vK′ w3 ≤ w4. By (commutativity),
w′ ≤ w2 vK′ w4. It follows from assumptions w′ |= �K′A′ and w′ 6∈ F that
w4 |= A′. Hence w3 |= �K′A.

Next pick w2 such that w′ ≤ w2. We must show that w2 |= �K′A′. So pick any
w3, w4 such that w2 ≤ w3 vK′ w4. We must show that w4 |= A′. Observe that
w′ ≤ w2 vK′ w4. It follows from assumptions w′ |= �K′A′ and w′ 6∈ F that
w4 |= A′. Finally pick w3 such that w2 ≤ w3. We must show that w3 |= A′.
Observe that w′ ≤ w3. By assumptions w′ |= �K′A′ and w′ 6∈ F it follows that
w3 |= A′. Hence w2 |= �K′A′.

Thus w′ |= �K′ �K′ A′.

Case. (Axiom T) A = (�K′A′) ⊃ A′

Pick any w′ ≥ w, and assume that w′ |= �K′A′. It suffices to show that w′ |= A.
We may assume that w′ 6∈ F , else w′ |= ⊥ and by Lemma E.7, w′ |= A′. Now
observe that w′ ≤ w′. Hence by definition of satisfaction of �K′A′, we must have
w′ |= A′ as required.

Case. (Axiom S) A = (�KA′) ⊃ �K′A′, where K � K ′

Pick any w′ ≥ w, and assume that w′ |= �KA′. It suffices to show that w′ |=
�K′A′. We may assume that w′ 6∈ F , else we trivially have w′ |= �K′A′ by
definition of satisfaction.

Pick any w2, w3 such that w′ ≤ w2 vK′ w3. We must show that w3 |= A′. By
(mod-closure), w′ ≤ w2 vK w3. It follows by assumptions w′ |= �KA′ and w′ 6∈ F
that w3 |= A′.

Next pick any w2 such that w′ ≤ w2. We must show that w2 |= A′. This follows
immediately by assumptions w′ |= �KA′ and w′ 6∈ F .

Thus w′ |= �K′A′, as required.

The remaining cases are straightforward, as they do not rely on modalities.

Now we prove a critical lemma, which states that w |= pAq if and only if w |= A, for
each DTL0 formula A.

72

Lemma E.9 (Critical Lemma). For each DTL0 formula A, each Kripke model M , and
each w ∈M , it is the case that w |= A if and only if w |= pAq.

Proof. We induct on A, and analyze cases on the top constructor in it.

Case. A = P (A is atomic). pAq = P .
By definition, w |= A iff w ∈ ρ(P) iff w |= pAq.

Case. A = A1 ∧ A2. pAq = pA1q ∧ pA2q.

w |= A1 ∧ A2 iff w |= A1 and w |= A2 (Defn.)
iff w |= pA1q and w |= pA2q (i.h.)
iff w |= pA1q ∧ pA2q (Defn.)

Case. A = A1 ∨ A2. pAq = pA1q ∨ pA2q.

w |= A1 ∨ A2 iff w |= A1 or w |= A2 (Defn.)
iff w |= pA1q or w |= pA2q (i.h.)
iff w |= pA1q ∨ pA2q (Defn.)

Case. A = A1 ⊃ A2. pAq = pA1q ⊃ pA2q.
Suppose w |= A1 ⊃ A2. Pick any w′ ≥ w and assume that w′ |= pA1q. It suffices to

show that w′ |= pA2q. By i.h., w′ |= A1. By assumption w |= A1 ⊃ A2, w′ |= A1 implies
w′ |= A2. Thus w′ |= A2. By i.h., w′ |= pA2q as required.

Conversely, suppose w |= pA1q ⊃ pA2q. Pick any w′ ≥ w and assume that w′ |= A1.
It suffices to show that w′ |= A2. By i.h., w′ |= pA1q. By assumption w |= pA1q ⊃ pA2q,
w′ |= pA1q implies w′ |= pA2q. Thus w′ |= pA2q. By i.h., w′ |= A2 as required.

Case. A = >. pAq = >.
This case is trivial because w |= > for each w.

Case. A = ⊥. pAq = ⊥.
By definition, w |= A iff w ∈ F iff w |= pAq.

Case. A = K says B. pAq = �K(K ⊃ pBq).
Suppose w |= K says B. We must show that w |= �K(K ⊃ pBq). We may assume

that w 6∈ F , otherwise by definition we have w |= �K(K ⊃ pBq).
Pick any w1, w2 such that w ≤ w1 vK w2. We need to show that w2 |= K ⊃ pBq.

So pick any w3 such that w2 ≤ w3 and w3 |= K. It suffices to show that w3 |= pBq.
Now observe that w ≤ w1 vK w2 ≤ w3. By (commutativity), w ≤ w1 vK w3. By
assumptions w |= K says B and w 6∈ F , we get w3 |= B. By i.h., w3 |= pBq, as required.

Next, pick any w1 such that w ≤ w1. We need to show that w1 |= K ⊃ pBq. Pick any
w2 such that w1 ≤ w2 and w2 |= K. It suffices to show that w2 |= pBq. From assumption
w2 |= K, we get w2 ∈ F or K ∈ θ(w2). If w2 ∈ F , then by Lemma E.7, w2 |= pBq. If
K ∈ θ(w2), by (mod-refl) we get w2 vK w2. We therefore have w ≤ w2 vK w2. By
assumptions w |= K says B and w 6∈ F , we get w2 |= B. By i.h., w2 |= pBq, as required.
Thus w |= �K(K ⊃ pBq).

Conversely, suppose that w |= �K(K ⊃ pBq). We must show that w |= K says B.
We may assume that w 6∈ F , otherwise by definition we have w |= K says B.

73

Pick any w1, w2 such that w ≤ w1 vK w2. It suffices to show that w2 |= B. By
assumptions w |= �K(K ⊃ pBq) and w 6∈ F it follows that w2 |= K ⊃ pBq. Hence,
w2 |= K implies w2 |= pBq. Now, by definition of vK , K ∈ θ(w2). Thus, w2 |= K. This
gives us w2 |= pBq. By i.h., w2 |= B as required.

We need one last lemma before we establish soundness and completeness. This
lemma states that O is satisfied in all Kripke models.

Lemma E.10 (Satisfaction for orders). For every Kripke model M , and every w ∈M ,
w |= O.

Proof. We show that w |= �`(K1 ⊃ K2) whenever K2 � K1. Pick any w′, w′′ such that
w ≤ w′ v` w′′. We need to show that w′′ |= K1 ⊃ K2. Pick any w3 ≥ w′′ and assume
that w3 |= K1. It suffices to show that w3 |= K2. By assumption w3 |= K1, we get
w3 ∈ F or K1 ∈ θ(w3). If w3 ∈ F , then w3 |= K2 by definition. If K1 ∈ θ(w3), then by
(view-closure) and K2 � K1, we get K2 ∈ θ(w3). Thus, w3 |= K2 as required.

Next pick w′ such that w′ ≥ w. We need to show that w′ |= K1 ⊃ K2. Pick any
w2 ≥ w′ and assume that w2 |= K1. It suffices to show that w2 |= K2. By assumption
w2 |= K1, we get w2 ∈ F or K1 ∈ θ(w2). If w2 ∈ F , then w2 |= K2 by definition. If
K1 ∈ θ(w2), then by (view-closure) and K2 � K1, we get K2 ∈ θ(w2). Thus, w2 |= K2

as required.
Hence w |= �`(K1 ⊃ K2) whenever K2 � K1, and consequently, w |= O.

Theorem E.11 (Correctness; Theorem 5.2). · K−→ A in DTL0 if and only if ` O ⊃
(K ⊃ pAq) in CS4m.

Proof. Suppose · K−→ A. By Corollary C.10, `H K says A in DTL0’s axiomatic sys-
tem. By Lemma E.4, O `G �K(K ⊃ pAq) in CS4m’s axiomatic system. Since
O `G (�K(K ⊃ pAq)) ⊃ (K ⊃ pAq) by Axiom (T), we get O `G K ⊃ pAq by
(mp). By Theorem E.2, · `G O ⊃ (K ⊃ pAq), and by Theorem E.3, ` O ⊃ (K ⊃ pAq).

Conversely, suppose that ` O ⊃ (K ⊃ pAq) in CS4m. By Lemma E.8, for each
Kripke model M , and each world w, w |= O ⊃ (K ⊃ pAq). From Lemma E.10, w |= O.
Therefore, w |= K ⊃ pAq. Since w is arbitrary, M |= K ⊃ pAq. Now pick any w ∈WK .
By definition, w |= K. Using this fact and M |= K ⊃ pAq, we get w |= pAq. Using
Lemma E.9, we deduce w |= A. Since w is arbitrarily chosen in WK , we get M |=K A.
Since M is arbitrary, by Theorem D.7 we obtain · K−→ A.

F Proofs from Section 5.2

In this Appendix we prove that the translation from ICL to DTL0 is both sound and
complete (Theorem 5.3). We use a sequent calculus formulation of ICL that is shown
in Figure 6.10 This sequent calculus is taken from earlier work [33] (For a slightly more
detailed, tutorial explanation see [30]). It uses two categorical judgments: A true and
K affirms A. The latter means that principal K states that A is true. Just as K says A

10We could have avoided using the sequent calculus for ICL, and worked with the axiomatic system,
without any significant change to the proof method. Using the sequent calculus eliminates trivial steps
that often arise in formal axiomatic proofs, and compacts our proofs.

74

(P atomic)
Γ, P ` P

init
Γ ` A

Γ ` K affirms A
affs

Γ ` K affirms A

Γ ` K says A
saysR

Γ,K says A,A ` K affirms C

Γ,K says A ` K affirms C
saysL

Γ ` A Γ ` B
Γ ` A ∧ B

∧R
Γ, A ∧ B,A,B ` C

Γ, A ∧ B ` C
∧L

Γ, A ∧ B,A,B ` K affirms C

Γ, A ∧ B ` K affirms C
∧Laff

Γ ` A
Γ ` A ∨ B

∨ R1
Γ ` B

Γ ` A ∨ B
∨ R2

Γ, A ∨ B,A ` C Γ, A ∨ B,B ` C
Γ, A ∨ B ` C

∨L

Γ, A ∨ B,A ` K affirms C Γ, A ∨ B,B ` K affirms C

Γ, A ∨ B ` K affirms C
∨Laff

Γ ` >
>R

Γ,⊥ ` C
⊥L

Γ,⊥ ` K affirms C
⊥Laff

Γ, A ` B
Γ ` A ⊃ B

⊃R
Γ, A ⊃ B ` A Γ, A ⊃ B,B ` C

Γ, A ⊃ B ` C
⊃L

Γ, A ⊃ B ` A Γ, A ⊃ B,B ` K affirms C

Γ, A ⊃ B ` K affirms C
⊃Laff

Figure 6: Sequent Calculus for ICL

internalizes K claims A in DTL0, K says A internalizes K affirms A in ICL. Unlike
DTL0 where the judgment K claims A only occurs in the hypothesis, but never as the
conclusion of a sequent, the judgment K affirms A in ICL occurs only in the conclusions
of sequents and never in the hypothesis. This shift is due to the difference in the nature
of says in the two logics. As usual, the judgment name true is often elided. It is quite
easy to show that this sequent calculus is equivalent to the axiomatic presentation for
ICL (Section 5.2).

Lemma F.1. ` A in ICL’s axiomatic system if and only if · ` A in ICL’s sequent
calculus.

Proof. It is easy to show by induction that ` A implies · ` A. For the proof in the other
direction, we generalize the statement, and prove by induction that whenever Γ ` A in
the sequent calculus, then ` Γ ⊃ A in the axiomatic system. (This requires that we
establish the deduction theorem for the axiomatic system, but that is straighforward.)

The sequent calculus for ICL admits two cut principles, as the following lemma
states.

75

Lemma F.2 (Admissibility of Cut). The following hold for ICL’s sequent calculus.

1. Γ ` A and Γ, A ` C imply Γ ` C

2. Γ ` K affirms A and Γ, A ` K affirms C imply Γ ` K affirms C.

Proof. See [33], Theorem 2, clauses 4 and 5.

Similarly, the identity property also holds for ICL’s sequent calculus.

Lemma F.3 (Identity). For each formula A, it is the case that Γ, A ` A.

Proof. See [33], Theorem 2, clause 2.

F.1 Proof of Soundness

Before proving soundness we prove a basic lemma.

Lemma F.4 (Global Lemma). For each ICL formula A and each principal K in DTL0,
it is the case that pAq K−→ global pAq in DTL0.

Proof. We induct on A, and case analyze its top constructor.

Case. A is atomic.

1. ` claims A,A
`−→ A (Rule (init))

2. ` claims A
`−→ A (Rule (claims))

3. ` claims A
`−→ ` says A (Rule (saysR))

4. ` claims A, ` says A
K−→ ` says ` says A (Rule (saysR))

5. ` says A
K−→ ` says ` says A (Rule (saysL))

Case. A = A1 ∧ A2

1. ` claims pAq, ` claims pBq, pAq
`−→ pAq (Theorem B.3)

2. ` claims pAq, ` claims pBq
`−→ pAq (Rule (claims))

3. ` claims pAq, ` claims pBq, pBq
`−→ pBq (Theorem B.3)

4. ` claims pAq, ` claims pBq
`−→ pBq (Rule (claims))

5. ` claims pAq, ` claims pBq
`−→ pAq ∧ pBq (Rule (∧R) on 2 an 4)

6. ` claims pAq, ` claims pBq, ` says pAq, ` says pBq, pAq ∧ pBq K−→ ` says (pAq ∧
pBq) (Rule (saysR))

7. ` says pAq, ` says pBq, pAq ∧ pBq K−→ ` says (pAq ∧ pBq) (Rule (saysL) twice)

76

8. pAq K−→ ` says pAq (i.h. on A)

9. pAq, ` says pBq, pAq ∧ pBq K−→ ` says (pAq ∧ pBq) (Theorem B.2 on 8 and 7)

10. pBq K−→ ` says pBq (i.h. on B)

11. pAq, pBq, pAq ∧ pBq K−→ ` says (pAq ∧ pBq) (Theorem B.2 on 10 and 9)

12. pAq ∧ pBq K−→ ` says (pAq ∧ pBq) (Rule (∧L))

Case. A = A1 ∨ A2

1. ` claims pAq, pAq
`−→ pAq (Theorem B.3)

2. ` claims pAq, pAq
`−→ pAq ∨ pBq (Rule (∨ R1))

3. ` claims pAq
`−→ pAq ∨ pBq (Rule (claims))

4. ` claims pAq, ` says pAq, pAq ∨ pBq K−→ ` says (pAq ∨ pBq) (Rule (saysR))

5. ` says pAq, pAq ∨ pBq K−→ ` says (pAq ∨ pBq) (Rule (saysL))

6. pAq K−→ ` says pAq (i.h. on A)

7. pAq, pAq ∨ pBq K−→ ` says (pAq ∨ pBq) (Theorem B.2 on 6 and 5)

8. ` says pBq, pAq ∨ pBq K−→ ` says (pAq ∨ pBq) (Similar to 5)

9. pBq K−→ ` says pBq (i.h. on B)

10. pBq, pAq ∨ pBq K−→ ` says (pAq ∨ pBq) (Theorem B.2 on 9 and 8)

11. pAq ∨ pBq K−→ ` says (pAq ∨ pBq) (Rule (∨L) on 7 and 10)

Case. A = >

1. · `−→ > (Rule (>R))

2. > K−→ ` says > (Rule (saysR))

Case. A = ⊥

1. ⊥ K−→ ` says ⊥ (Rule (⊥L))

Case. A = A1 ⊃ A2

1. ` claims pA1q ⊃ pA2q, pA1q ⊃ pA2q
`−→ pA1q ⊃ pA2q (Theorem B.3)

2. ` claims pA1q ⊃ pA2q
`−→ pA1q ⊃ pA2q (Rule (claims))

77

3. ` claims pA1q ⊃ pA2q
`−→ ` says (pA1q ⊃ pA2q) (Rule (saysR))

4. ` claims pA1q ⊃ pA2q, ` says (pA1q ⊃ pA2q)
K−→ ` says ` says (pA1q ⊃ pA2q)

(Rule (saysR))

5. ` says (pA1q ⊃ pA2q)
K−→ ` says ` says (pA1q ⊃ pA2q) (Rule (saysL))

Case. A = K says B.

1. ` claims K says pBq,K says pBq
`−→ K says pBq (Theorem B.3)

2. ` claims K says pBq
`−→ K says pBq (Rule (claims))

3. ` claims K says pBq
`−→ ` says K says pBq (Rule (saysR))

4. ` claims K says pBq, ` says K says pBq
K−→ ` says ` says K says pBq (Rule (saysR))

5. ` says K says pBq
K−→ ` says ` says K says pBq (Rule (saysL))

Now we prove soundness of the translation. If Γ is a set of DTL0 formulas, we use the
notation ` claims Γ to denote the DTL0 hypothesis obtained by prefixing each formula
in Γ with ` claims.

Lemma F.5 (Soundness of Translation). The following hold for any ICL formula A,
any ICL principal K, and any set Γ of ICL formulas.

1. If Γ ` A in ICL’s sequent calculus, then ` claims pΓq `−→ pAq in DTL0.

2. If Γ ` K affirms A in ICL’s sequent calculus, then ` claims pΓq K−→ pAq in DTL0.

Proof. We prove both statements by simultaneous induction on the given proofs in ICL’s
sequent calculus. We analyze cases of the last rule.

Proof of (1).

Case.
(P atomic)
Γ, P ` P

init

1. ` claims pΓq, ` claims ` says P, ` says P, ` claims P, P
`−→ P (Rule (init))

2. ` claims pΓq, ` claims ` says P, ` says P, ` claims P
`−→ P (Rule (claims))

3. ` claims pΓq, ` claims ` says P, ` says P
`−→ P (Rule (saysL))

4. ` claims pΓq, ` claims ` says P
`−→ P (Rule (claims))

5. ` claims pΓq, ` claims ` says P
`−→ ` says P (Rule (saysR))

78

Case.
Γ ` K affirms A

Γ ` K says A
saysR

1. ` claims pΓq K−→ pAq (i.h. on premise)

2. ` claims pΓq `−→ K says pAq (Rule (saysR))

3. ` claims pΓq `−→ ` says K says pAq (Rule (saysR))

Case.
Γ ` A Γ ` B

Γ ` A ∧ B
∧R

1. ` claims pΓq `−→ pAq (i.h. on 1st premise)

2. ` claims pΓq `−→ pBq (i.h. on 2nd premise)

3. ` claims pΓq `−→ pAq ∧ pBq (Rule (∧R))

Case.
Γ, A ∧ B,A,B ` C

Γ, A ∧ B ` C
∧L

1. ` claims pΓq, ` claims (pAq ∧ pBq), ` claims pAq, ` claims pBq
`−→ pCq

(i.h. on premise)

2. ` claims pΓq, ` claims (pAq ∧ pBq), ` says pAq, ` says pBq
`−→ pCq

(Weakening and Rule (saysL))

3. pAq `−→ ` says pAq (Lemma F.4)

4. ` claims pΓq, ` claims (pAq ∧ pBq), pAq, ` says pBq
`−→ pCq

(Theorem B.2 on 3 and 2)

5. pBq `−→ ` says pBq (Lemma F.4)

6. ` claims pΓq, ` claims (pAq ∧ pBq), pAq, pBq `−→ pCq (Theorem B.2 on 5 and 4)

7. ` claims pΓq, ` claims (pAq ∧ pBq), pAq ∧ pBq, pAq, pBq `−→ pCq (Weakening)

8. ` claims pΓq, ` claims (pAq ∧ pBq), pAq ∧ pBq `−→ pCq (Rule (∧L))

9. ` claims pΓq, ` claims (pAq ∧ pBq) `−→ pCq (Rule (claims))

Case.
Γ ` A

Γ ` A ∨ B
∨ R1

1. ` claims pΓq `−→ pAq (i.h. on premise)

79

2. ` claims pΓq `−→ pAq ∨ pBq (Rule (∨ R1))

Case.
Γ ` B

Γ ` A ∨ B
∨ R2

1. ` claims pΓq `−→ pBq (i.h. on premise)

2. ` claims pΓq `−→ pAq ∨ pBq (Rule (∨ R2))

Case.
Γ, A ∨ B,A ` C Γ, A ∨ B,B ` C

Γ, A ∨ B ` C
∨L

1. ` claims pΓq, ` claims (pAq ∨ pBq), ` claims pAq
`−→ pCq (i.h. on 1st premise)

2. ` claims pΓq, ` claims (pAq ∨ pBq), ` says pAq
`−→ pCq

(Weakening and Rule (saysL))

3. pAq `−→ ` says pAq (Lemma F.4)

4. ` claims pΓq, ` claims (pAq ∨ pBq), pAq `−→ pCq (Theorem B.2 on 3 and 2)

5. ` claims pΓq, ` claims (pAq ∨ pBq), pAq ∨ pBq, pAq `−→ pCq (Weakening)

6. ` claims pΓq, ` claims (pAq ∨ pBq), pAq ∨ pBq, pBq `−→ pCq (Similar to 5)

7. ` claims pΓq, ` claims (pAq ∨ pBq), pAq ∨ pBq `−→ pCq (Rule (∨L) on 5 and 6)

8. ` claims pΓq, ` claims (pAq ∨ pBq) `−→ pCq (Rule (claims))

Case.
Γ ` >

>R

1. ` claims pΓq `−→ > (Rule (>R))

Case.
Γ,⊥ ` C

⊥L

1. ` claims pΓq, ` claims ⊥,⊥ `−→ pCq (Rule (⊥L))

2. ` claims pΓq, ` claims ⊥ `−→ pCq (Rule (claims))

Case.
Γ, A ` B

Γ ` A ⊃ B
⊃R

1. ` claims pΓq, ` claims pAq
`−→ pBq (i.h. on premise)

2. ` claims pΓq, ` says pAq
`−→ pBq (Weakening and Rule (saysL))

80

3. pAq `−→ ` says pAq (Lemma F.4)

4. ` claims pΓq, pAq `−→ pBq (Theorem B.2 on 3 and 2)

5. ` claims pΓq `−→ pAq ⊃ pBq (Rule (⊃R))

6. ` claims pΓq `−→ ` says (pAq ⊃ pBq) (Rule (saysR))

Case.
Γ, A ⊃ B ` A Γ, A ⊃ B,B ` C

Γ, A ⊃ B ` C
⊃L

1. ` claims pΓq, ` claims ` says (pAq ⊃ pBq) `−→ pAq (i.h. on 1st premise)

2. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), ` claims pBq
`−→ pCq

(i.h. on 2nd premise)

3. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), ` says pBq
`−→ pCq

(Weakening and Rule (saysL))

4. pBq `−→ ` says pBq (Lemma F.4)

5. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), pBq `−→ pCq (Theorem B.2 on 4 and 3)

6. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), pAq ⊃ pBq `−→ pCq

(Rule (⊃L) on 1 and 5)

7. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), ` says (pAq ⊃ pBq), ` claims (pAq ⊃
pBq), pAq ⊃ pBq `−→ pCq (Weakening)

8. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), ` says (pAq ⊃ pBq), ` claims (pAq ⊃
pBq) `−→ pCq (Rule (claims))

9. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), ` says (pAq ⊃ pBq) `−→ pCq

(Rule (saysL))

10. ` claims pΓq, ` claims ` says (pAq ⊃ pBq) `−→ pCq (Rule (claims))

Proof of (2).

Case.
Γ ` A

Γ ` K affirms A
affs

1. ` claims pΓq `−→ pAq (i.h. (1) on premise)

81

2. ` claims pΓq K−→ pAq (Theorem B.1 on 1)

Case.
Γ,K says A,A ` K affirms C

Γ,K says A ` K affirms C
saysL

1. ` claims pΓq, ` claims ` says K says pAq, ` claims pAq
K−→ pCq (i.h. on premise)

2. ` claims pΓq, ` claims ` says K says pAq, ` says pAq
K−→ pCq

(Weakning and Rule (saysL))

3. pAq K−→ ` says pAq (Lemma F.4)

4. ` claims pΓq, ` claims ` says K says pAq, pAq
K−→ pCq (Theorem B.2 on 3, 2)

5. ` claims pΓq, ` claims ` says K says pAq, ` says K says pAq, ` claims K says

pAq,K says pAq,K claims pAq, pAq
K−→ pCq (Weakening)

6. ` claims pΓq, ` claims ` says K says pAq, ` says K says pAq, ` claims K says

pAq,K says pAq,K claims pAq
K−→ pCq (Rule (claims))

7. ` claims pΓq, ` claims ` says K says pAq, ` says K says pAq, ` claims K says

pAq,K says pAq
K−→ pCq (Rule (saysL))

8. ` claims pΓq, ` claims ` says K says pAq, ` says K says pAq, ` claims K says pAq
K−→

pCq (Rule (claims))

9. ` claims pΓq, ` claims ` says K says pAq, ` says K says pAq
K−→ pCq (Rule (saysL))

10. ` claims pΓq, ` claims ` says K says pAq
K−→ pCq (Rule (claims))

Case.
Γ, A ∧ B,A,B ` K affirms C

Γ, A ∧ B ` K affirms C
∧Laff

1. ` claims pΓq, ` claims (pAq ∧ pBq), ` claims pAq, ` claims pBq
K−→ pCq

(i.h. on premise)

2. ` claims pΓq, ` claims (pAq ∧ pBq), ` says pAq, ` says pBq
K−→ pCq

(Weakening and Rule (saysL))

3. pAq K−→ ` says pAq (Lemma F.4)

4. ` claims pΓq, ` claims (pAq ∧ pBq), pAq, ` says pBq
K−→ pCq

(Theorem B.2 on 3 and 2)

5. pBq K−→ ` says pBq (Lemma F.4)

82

6. ` claims pΓq, ` claims (pAq ∧ pBq), pAq, pBq K−→ pCq (Theorem B.2 on 5 and 4)

7. ` claims pΓq, ` claims (pAq ∧ pBq), pAq ∧ pBq, pAq, pBq K−→ pCq (Weakening)

8. ` claims pΓq, ` claims (pAq ∧ pBq), pAq ∧ pBq K−→ pCq (Rule (∧L))

9. ` claims pΓq, ` claims (pAq ∧ pBq) K−→ pCq (Rule (claims))

Case.
Γ, A ∨ B,A ` K affirms C Γ, A ∨ B,B ` K affirms C

Γ, A ∨ B ` K affirms C
∨Laff

1. ` claims pΓq, ` claims (pAq ∨ pBq), ` claims pAq
K−→ pCq (i.h. on 1st premise)

2. ` claims pΓq, ` claims (pAq ∨ pBq), ` says pAq
K−→ pCq

(Weakening and Rule (saysL))

3. pAq K−→ ` says pAq (Lemma F.4)

4. ` claims pΓq, ` claims (pAq ∨ pBq), pAq K−→ pCq (Theorem B.2 on 3 and 2)

5. ` claims pΓq, ` claims (pAq ∨ pBq), pAq ∨ pBq, pAq K−→ pCq (Weakening)

6. ` claims pΓq, ` claims (pAq ∨ pBq), pAq ∨ pBq, pBq K−→ pCq (Similar to 5)

7. ` claims pΓq, ` claims (pAq ∨ pBq), pAq ∨ pBq K−→ pCq (Rule (∨L) on 5 and 6)

8. ` claims pΓq, ` claims (pAq ∨ pBq) K−→ pCq (Rule (claims))

Case.
Γ,⊥ ` K affirms C

⊥Laff

1. ` claims pΓq, ` claims ⊥,⊥ K−→ pCq (Rule (⊥L))

2. ` claims pΓq, ` claims ⊥ K−→ pCq (Rule (claims))

Case.
Γ, A ⊃ B ` A Γ, A ⊃ B,B ` K affirms C

Γ, A ⊃ B ` K affirms C
⊃Laff

1. ` claims pΓq, ` claims ` says (pAq ⊃ pBq) `−→ pAq (i.h. on 1st premise)

2. ` claims pΓq, ` claims ` says (pAq ⊃ pBq) K−→ pAq (Theorem B.1 on 1)

3. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), ` claims pBq
K−→ pCq

(i.h. on 2nd premise)

4. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), ` says pBq
K−→ pCq

(Weakening and Rule (saysL))

83

5. pBq K−→ ` says pBq (Lemma F.4)

6. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), pBq K−→ pCq (Theorem B.2 on 5 and 4)

7. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), pAq ⊃ pBq K−→ pCq

(Rule (⊃L) on 2 and 6)

8. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), ` says (pAq ⊃ pBq), ` claims (pAq ⊃
pBq), pAq ⊃ pBq K−→ pCq (Weakening)

9. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), ` says (pAq ⊃ pBq), ` claims (pAq ⊃
pBq) K−→ pCq (Rule (claims))

10. ` claims pΓq, ` claims ` says (pAq ⊃ pBq), ` says (pAq ⊃ pBq) K−→ pCq

(Rule (saysL))

11. ` claims pΓq, ` claims ` says (pAq ⊃ pBq) K−→ pCq (Rule (claims))

F.2 Proof of Completeness

We prove completeness of the translation by a method of simulation between proofs.
First we characterize syntactically the sequents that can arise in a proof of a translated
formula. We call such sequents regular sequents. Next, we define an inverse translation
(x·y) from regular sequents to sequents of ICL, and prove by induction that any proof in
DTL0 that ends in a regular sequent can also be simulated (under the inverse translation)
in ICL. From this completeness follows immediately. As a convention, we use the letter
k to denote a principal from ICL, and K to denote a principal from DTL0. The latter
may either be a principal from ICL or `.

Definition F.6 (Regular Sequents). A DTL0 hypothesis Γ is called regular if it contains
assumptions of the following forms only: pAq, k claims pAq, k says pAq, pAq ⊃ pBq, P ,
` claims k says pAq, ` claims pAq ⊃ pBq, or ` claims P .

A DTL0 sequent is called regular if it falls into one of the two cateories:

1. (α-regular) Γ k−→ pCq, where Γ is a regular hypothesis.

2. (β-regular) Γ `−→ C, where Γ is a regular hypothesis, and C has one of the forms
pAq, k says pAq, pAq ⊃ pBq, or P .

Definition F.7 (Inverse Translation). The inverse translation for regular hypothesis
Γ (written xΓy) is defined pointwise, where the inverse translation for assumptions is

84

defined as follows:
xpAqy = A

xk claims pAqy = k says A
xk says pAqy = k says A
xpAq ⊃ pBqy = A ⊃ B

xPy = P
x` claims k says pAqy = k says A
x` claims pAq ⊃ pBqy = A ⊃ B

x` claims Py = P

The inverse translation for the α-regular sequent Γ k−→ pCq is defined as xΓy ` K affirms

C. The inverse translation for the β-regular sequent Γ `−→ C is defined as xΓy ` xCy,
where the inverse translation of C is defined as follows:

xpAqy = A
xk says pAqy = k says A
xpAq ⊃ pBqy = A ⊃ B

xPy = P

Lemma F.8 (Completeness of Translation). The following hold.

1. If Γ k−→ pCq is α-regular and provable in DTL0, then xΓy ` K affirms C in ICL’s
sequent calculus.

2. If Γ `−→ C is β-regular and provable in DTL0, then xΓy ` xCy in ICL’s sequent
calculus.

Proof. We prove both statements by a simultaneous induction on the depths of the given
derivations, and case analyze the last rule in the derivations.

Proof of (1).

Case.
P atomic

Γ, P k−→ P
init

1. xΓy, P ` P (Rule (init))

2. xΓy, P ` k affirms P (Rule (affs))

Case.
Γ, k claims pAq, pAq

k−→ pCq k � k

Γ, k claims pAq
k−→ pCq

claims

1. xΓy, k says A,A ` k affirms C (i.h. on premise)

2. xΓy, k says A ` k affirms C (Rule (saysL)

Case.
Γ, ` claims A,A

k−→ pCq ` � k

Γ, ` claims A
k−→ pCq

claims

By regularity, A must have one of the forms k says pBq, pB1q ⊃ pB2q, or P . It is
easy to check that in each case, x` claims Ay = xAy. Thus we have:

85

1. xΓy, x` claims Ay, xAy ` k affirms C (i.h. on premise)

2. xΓy, x` claims Ay ` k affirms C (Strengthening; x` claims Ay = xAy)

Case.
Γ|`

`−→ C

Γ k−→ ` says C
saysR

By regularity, ` says C must have form pC ′q, and hence C must have one of the
forms k′ says pAq, pAq ⊃ pBq, or P . In each case, observe that the premise is β-regular,
and that xCy = x` says Cy. Thus we have

1. xΓ|`y ` xCy (i.h. (2) on premise)

2. xΓy ` xCy (Weakening)

3. xΓy ` k affirms xCy (Rule (affs))

4. xΓy ` k affirms x` says Cy (xCy = x` says Cy)

Case.
Γ, k′ says pAq, k′ claims pAq

k−→ pCq

Γ, k′ says pAq
k−→ pCq

saysL

1. xΓy, k′ says A, k′ says A ` k affirms C (i.h. on premise)

2. xΓy, k′ says A ` k affirms C (Strengthening)

Case.
Γ, ` says A, ` claims A

k−→ pCq

Γ, ` says A
k−→ pCq

saysL

By regularity, A must have one of the forms k′ says pA′q, pBq ⊃ pCq, or P . In each
case, observe that the premise is also α-regular, and that x` says Ay = x` claims Ay.

1. xΓy, x` says Ay, x` claims Ay ` k affirms C (i.h. on premise)

2. xΓy, x` says Ay ` k affirms C (Strengthening; x` says Ay = x` claims Ay)

Case.
Γ k−→ pAq Γ k−→ pBq

Γ k−→ pAq ∧ pBq
∧R

1. xΓy ` k affirms A (i.h. on 1st premise)

2. xΓy ` k affirms B (i.h. on 2nd premise)

3. A,B ` A ∧ B (Provable in ICL)

4. A,B ` k affirms (A ∧ B) (Rule (affs))

5. xΓy, A ` k affirms (A ∧ B) (Lemma F.2.2 on 2 and 4)

6. xΓy ` k affirms (A ∧ B) (Lemma F.2.2 on 1 and 5)

86

Case.
Γ, pAq ∧ pBq, pAq, pBq k−→ pCq

Γ, pAq ∧ pBq k−→ pCq
∧L

1. xΓy, A ∧ B,A,B ` k affirms C (i.h. on premise)

2. xΓy, A ∧ B ` k affirms C (Rule (∧Laff))

Case.
Γ k−→ pAq

Γ k−→ pAq ∨ pBq
∨ R1

1. xΓy ` k affirms A (i.h. on premise)

2. A ` A ∨ B (Provable in ICL)

3. A ` k affirms (A ∨ B) (Rule (affs))

4. xΓy ` k affirms (A ∨ B) (Lemma F.2.2 on 1 and 3)

Case.
Γ k−→ pBq

Γ k−→ pAq ∨ pBq
∨ R2

1. xΓy ` k affirms B (i.h. on premise)

2. B ` A ∨ B (Provable in ICL)

3. B ` k affirms (A ∨ B) (Rule (affs))

4. xΓy ` k affirms (A ∨ B) (Lemma F.2.2 on 1 and 3)

Case.
Γ, pAq ∨ pBq, pAq k−→ pCq Γ, pAq ∨ pBq, pBq k−→ pCq

Γ, pAq ∨ pBq k−→ pCq
∨ L

1. xΓy, A ∨ B,A ` k affirms C (i.h. on 1st premise)

2. xΓy, A ∨ B,B ` k affirms C (i.h. on 2nd premise)

3. xΓy, A ∨ B ` k affirms C (Rule (∨Laff))

Case.
Γ k−→ >

>R

1. xΓy ` > (Rule (>R))

2. xΓy ` k affirms > (Rule (affs))

Case.
Γ,⊥ k−→ pCq

⊥L

1. xΓy,⊥ ` k affirms C (Rule (⊥Laff))

87

Case. Rule (⊃R) does not arise.

Case.
Γ, pAq ⊃ pBq k−→ pAq Γ, pAq ⊃ pBq, pBq k−→ pCq

Γ, pAq ⊃ pBq k−→ pCq
⊃L

1. xΓy, A ⊃ B ` k affirms A (i.h. on 1st premise)

2. xΓy, A ⊃ B,B ` k affirms C (i.h. on 2nd premise)

3. xΓy, A ⊃ B,B,A ` k affirms C (Weakening)

4. xΓy, A ⊃ B,A ` A (Lemma F.3)

5. xΓy, A ⊃ B,A ` k affirms C (Rule (⊃Laff) on 4 and 3)

6. xΓy, A ⊃ B ` k affirms C (Lemma F.2 on 1 and 5)

Proof of (2).

Case.
P atomic

Γ, P `−→ P
init

1. xΓy, P ` P (Rule (init))

Case.
Γ, ` claims A,A

`−→ C ` � `

Γ, ` claims A
`−→ C

claims

By regularity, A must have one of the forms k says pBq, pB1q ⊃ pB2q, or P . It is
easy to check that in each case, x` claims Ay = xAy. Thus we have:

1. xΓy, x` claims Ay, xAy ` xCy (i.h. on premise)

2. xΓy, x` claims Ay ` xCy (Strengthening; x` claims Ay = xAy)

Case.
Γ|`

`−→ C

Γ `−→ ` says C
saysR

By regularity, ` says C must have form pC ′q, and hence C must have one of the
forms k′ says pAq, pAq ⊃ pBq, or P . In each case, observe that the premise is also
β-regular, and that xCy = x` says Cy. Thus we have

1. xΓ|`y ` xCy (i.h. on premise)

2. xΓy ` xCy (Weakening)

3. xΓy ` x` says Cy (xCy = x` says Cy)

88

Case.
Γ|k

k−→ pCq

Γ `−→ k says pCq
saysR

Observe that the premise is α-regular.

1. xΓ|ky ` k affirms C (i.h. (1) on premise)

2. xΓ|ky ` k says C (Rule (saysR))

3. xΓy ` k says C (Weakening)

Case.
Γ, k′ says pAq, k′ claims pAq

`−→ C

Γ, k′ says pAq
`−→ C

saysL

1. xΓy, k′ says A, k′ says A ` xCy (i.h. on premise)

2. xΓy, k′ says A ` xCy (Strengthening)

Case.
Γ, ` says A, ` claims A

`−→ C

Γ, ` says A
`−→ C

saysL

By regularity, A must have one of the forms k′ says pA′q, pBq ⊃ pB′q, or P . In each
case, observe that the premise is also β-regular, and that x` says Ay = x` claims Ay.

1. xΓy, x` says Ay, x` claims Ay ` xCy (i.h. on premise)

2. xΓy, x` says Ay ` xCy (Strengthening; x` says Ay = x` claims Ay)

Case.
Γ `−→ pAq Γ `−→ pBq

Γ `−→ pAq ∧ pBq
∧R

1. xΓy ` A (i.h. on 1st premise)

2. xΓy ` B (i.h. on 2nd premise)

3. xΓy ` (A ∧ B) (Rule (∧R))

Case.
Γ, pAq ∧ pBq, pAq, pBq `−→ C

Γ, pAq ∧ pBq `−→ C
∧L

1. xΓy, A ∧ B,A,B ` xCy (i.h. on premise)

2. xΓy, A ∧ B ` xCy (Rule (∧L))

Case.
Γ `−→ pAq

Γ `−→ pAq ∨ pBq
∨ R1

1. xΓy ` A (i.h. on premise)

89

2. xΓy ` A ∨ B (Rule (∨ R1))

Case.
Γ `−→ pBq

Γ `−→ pAq ∨ pBq
∨ R2

1. xΓy ` B (i.h. on premise)

2. xΓy ` A ∨ B (Rule (∨ R2))

Case.
Γ, pAq ∨ pBq, pAq `−→ C Γ, pAq ∨ pBq, pBq `−→ C

Γ, pAq ∨ pBq `−→ C
∨ L

1. xΓy, A ∨ B,A ` xCy (i.h. on 1st premise)

2. xΓy, A ∨ B,B ` xCy (i.h. on 2nd premise)

3. xΓy, A ∨ B ` xCy (Rule (∨L))

Case.
Γ `−→ >

>R

1. xΓy ` > (Rule (>R))

Case.
Γ,⊥ `−→ C

⊥L

1. xΓy,⊥ ` xCy (Rule (⊥L))

Case.
Γ, pAq `−→ pBq

Γ `−→ pAq ⊃ pBq
⊃R

1. xΓy, A ` B (i.h. on premise)

2. xΓy ` A ⊃ B (Rule (⊃R))

Case.
Γ, pAq ⊃ pBq `−→ pAq Γ, pAq ⊃ pBq, pBq `−→ C

Γ, pAq ⊃ pBq `−→ C
⊃L

1. xΓy, A ⊃ B ` A (i.h. on 1st premise)

2. xΓy, A ⊃ B,B ` xCy (i.h. on 2nd premise)

3. xΓy, A ⊃ B ` xCy (Rule (⊃L))

Theorem F.9 (Correctness; Theorem 5.3). ` A in ICL if and only if · `−→ pAq in DTL0.

Proof. Suppose ` A in ICL. By Lemma F.1, · ` A in ICL’s sequent calculus. Thus by
Lemma F.5.1, · `−→ pAq in DTL0.

Conversely, suppose that · `−→ pAq in DTL0. By Lemma F.8.2, · ` A in ICL’s sequent
calculus. By Lemma F.1, ` A in ICL’s axiomatic system.

90

G Proofs from Section 5.3

In this appendix we prove that the translation from IIK to DTL0 is both sound and
complete (Theorem 5.4). Part of our proof uses a generalized axiomatic proof system
for IIK, which we develop first.

G.1 The Axiomatic System for IIK

In Section 5.3, we listed the axioms and rules of IIK that are specific to the modality
K says A. Below we list all the rules and axioms of IIK.

` A
` K says A

nec
` A ⊃ B ` A

` B
mp

A is an axiom
` A

ax

Axioms:

(K says (A ⊃ B)) ⊃ ((K says A) ⊃ (K says B)) (K)
A ⊃ (B ⊃ A) (imp1)
(A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)) (imp2)
A ⊃ (B ⊃ (A ∧ B)) (conj1)
(A ∧ B) ⊃ A (conj2)
(A ∧ B) ⊃ B (conj3)
A ⊃ (A ∨ B) (disj1)
B ⊃ (A ∨ B) (disj2)
(A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)) (disj3)
> (true)
⊥ ⊃ A (false)

Next, we generalize the axiomatic system, adding hypothetical reasoning, as we did
for the axiomatic system of DTL0 (Appendix C). We write Γ `G A to mean that A
follows from the formulas in Γ. The rules of deduction are:

Γ, A `G A
use

· `G A
Γ `G K says A

nec
Γ `G A ⊃ B Γ `G A

Γ `G B
mp

A is an axiom
Γ `G A

ax

As for DTL0, we prove some elementary properties for the generalized system of IIK,
and show also that the generalized system and axiomatic system are equivalent.

Lemma G.1 (Basic properties). The following hold.

1. (Weakening) Γ `G A implies Γ,Γ′ `G A

2. (Substitution) Γ `G A and Γ, A `G B imply Γ `G B

Proof. Exactly as for DTL0 in Lemma C.1, since the proof does not rely on the specific
axioms used.

Theorem G.2 (Deduction). The following hold.

91

1. Γ `G A ⊃ B implies Γ, A `G B

2. Γ, A `G B implies Γ `G A ⊃ B

Proof. Exactly as for DTL0 in Theorem C.2. The proof does not rely on the axioms (4),
(C), or (S), which are the only axiom present in DTL0 that are not present in IIK.

Theorem G.3 (G iff Axiomatic). ` A if and only if · `G A

Proof. In each direction by straightforward induction on the given derivation.

G.2 Proof of Soundness

Lemma G.4 (Soundness of Translation). If ` A in IIK, then for each K, · K−→ pAq in
ICL’s axiomatic system.

Proof. We induct on the derivation of ` A, analyzing cases of the last rule in it.

Case.
` A

` K ′ says A
nec

1. · K
′
−−→ pAq (i.h. on premise)

2. · d−→ K ′ says pAq (Rule (saysR))

3. · K−→ d says K ′ says pAq (Rule (saysR))

Case.
` A ⊃ B ` A

` B
mp

1. · K−→ pAq ⊃ pBq (i.h. on 1st premise)

2. · K−→ pAq (i.h. on 2nd premise)

3. pBq K−→ pBq (Theorem B.3)

4. pAq ⊃ pBq K−→ pBq (Rule (⊃L) on 2 and 3)

5. · K−→ pBq (Theorem B.2 on 1 and 4)

Case.
A is an axiom

` A
ax

We case analyze all possible axioms A.

Case. (Axiom K) A = (K ′ says (A′ ⊃ B′)) ⊃ ((K ′ says A′) ⊃ (K ′ says B′))

1. pA′q ⊃ pB′q, pA′q K′
−−→ pB′q (Provable in DTL0)

2. K ′ claims (pA′q ⊃ pB′q),K ′ claims pA′q
K′
−−→ pB′q

92

(Weakening and rule (claims))

3. K ′ claims (pA′q ⊃ pB′q),K ′ claims pA′q
d−→ K ′ says pB′q (Rule (saysR))

4. K ′ says (pA′q ⊃ pB′q),K ′ says pA′q
d−→ K ′ says pB′q

(Weakening and rule (saysL))

5. d claims K ′ says (pA′q ⊃ pB′q), d claims K ′ says pA′q
d−→ K ′ says pB′q

(Weakening and rule (claims))

6. d claims K ′ says (pA′q ⊃ pB′q), d claims K ′ says pA′q
K−→ d says K ′ says pB′q

(Rule (saysR))

7. d says K ′ says (pA′q ⊃ pB′q), d says K ′ says pA′q
K−→ d says K ′ says pB′q

(Weakening and rule (saysL))

8. · K−→ (d says K ′ says (pA′q ⊃ pB′q)) ⊃ ((d says K ′ says pA′q) ⊃ d says K ′ says
pB′q) (Rule (⊃R))

The remaining cases are straightforward.

G.3 Proof of Completeness

Our proof of completeness needs a basic lemma about proofs in DTL0. We also use this
lemma later to prove other translations correct.

Lemma G.5 (Inversion in DTL0). The following hold in the sequent calculus of DTL0.

1. If Γ,K says A
K′
−−→ C then Γ,K claims A

K′
−−→ C by a shorter or equal derivation.

2. If Γ K−→ A ∧ B then Γ K−→ A and Γ K−→ B by shorter or equal derivations.

Proof. In each case by induction on the given derivations.

Next, we carefully characterize sequents that may occur in the proof of a translated
formula. We call these sequents regular. As a general convention, we use the letter k to
denote principals in IIK, and K to denote principals in DTL0. The latter may either
be principals from IIK, or d. The principal `, although present in DTL0, never shows
up in proofs of translated formulas. This is a consequence of the subformula property
of DTL0’s sequent calculus.

Definition G.6 (Regular Hypothesis). Given an IIK principal k, we call a hypothesis
Γ k-regular if the following holds:

1. Γ contains assumptions of the forms pAq, k claims pAq, and d claims k′ says pAq
only, where A denotes an arbitrary formula in IIK. (Note that the principal k in
“k-regular” is the same as the principal k in k claims pAq.)

We call a DTL0 hypothesis Γ d-regular if the following hold:

93

1. Γ contains assumptions of the forms d claims k says pAq and k claims pAq only,
where A denotes an arbitrary formula in IIK.

2. k claims pAq ∈ Γ implies d claims k says pAq ∈ Γ.

Definition G.7 (Regular Sequent). We call a sequent regular if it has one of the fol-
lowing forms:

1. (k-regular) Γ k−→ pAq, where Γ is k-regular.

2. (d-regular) Γ d−→ k says pAq, where Γ is d-regular.

Next we define an inverse translation x·yK from regular hypothesis to hypothesis in
IIK’s generalized axiomatic system.

Definition G.8 (Inverse Translation). The inverse translation xΓyk for a k-regular
hypothesis Γ is defined pointwise, where the inverse translation for assumptions is:

xpAqyk = A
xk claims pAqyk = A

xd claims k′ says pAqyk = k′ says A

The inverse translation xΓyd for a d-regular hypothesis Γ is defined pointwise, where the
inverse translation for assumptions is:

xd claims k says pAqyd = k says A
xk claims pAqyd = · (Empty)

Lemma G.9 (Completeness of Translation). The following hold:

1. If Γ k−→ pAq is k-regular and provable in DTL0, then xΓyk `G A is provable in
IIK’s generalized axiomatic system.

2. If Γ d−→ k says pAq is d-regular and provable in DTL0, then xΓyd `G k says A is
provable in IIK’s generalized axiomatic system.

Proof. We prove both statements simultaneously by induction on the depths of the given
derivations. In each case, we analyze the last rule in the derivation.

Proof of (1).

Case.
P atomic

Γ, P k−→ P
init

1. xΓyk, P `G P (Rule (use))

Case.
Γ, k claims pAq, pAq

k−→ pBq k � k

Γ, k claims pAq
k−→ pBq

claims

1. xΓyk, A,A `G B (i.h. on premise)

94

2. xΓyk, A `G A (Rule (use))

3. xΓyk, A `G B (Lemma G.1.2 on 2 and 1)

Case.
Γ|d

d−→ k′ says pAq

Γ k−→ d says k′ says pAq
saysR

By k-regularity of Γ, Γ|d must have the form d claims k1 says pB1q, . . . , d claims
kn says pBnq. Clearly, Γ|d is d-regular. Hence the premise is d-regular.

1. xΓ|dyd `G k′ says A (i.h. (2) on premise)

2. xΓ|dyd ⊆ xΓyk (Defn.)

3. xΓyk `G k′ says A (Lemma G.1.1 on 1 using 2)

Case.
Γ, d says k′ says pAq, d claims k′ says pAq

k−→ pCq

Γ, d says k′ says pAq
k−→ pCq

saysL

1. xΓyk, k′ says A, k′ says A `G C (i.h. on premise)

2. xΓyk, k′ says A `G k′ says A (Rule (use))

3. xΓyk, k′ says A `G C (Lemma G.1.2 on 2 and 1)

Case.
Γ k−→ pAq Γ k−→ pBq

Γ k−→ pAq ∧ pBq
∧R

1. xΓyk `G A (i.h. on 1st premise)

2. xΓyk `G B (i.h. on 2nd premise)

3. xΓyk `G A ⊃ (B ⊃ (A ∧ B)) (Rule (ax) and (conj1))

4. xΓyk `G B ⊃ (A ∧ B) (Rule (mp) on 3 and 1)

5. xΓyk `G A ∧ B (Rule (mp) on 4 and 2)

Case.
Γ, pAq ∧ pBq, pAq, pBq k−→ pCq

Γ, pAq ∧ pBq k−→ pCq
∧L

1. xΓyk, A ∧ B,A,B `G C (i.h. on premise)

2. xΓyk, A ∧ B `G A ∧ B (Rule (use))

3. xΓyk, A ∧ B `G (A ∧ B) ⊃ A (Rule (ax) and (conj2))

4. xΓyk, A ∧ B `G A (Rule (mp) on 3 and 2)

5. xΓyk, A ∧ B `G (A ∧ B) ⊃ B (Rule (ax) and (conj3))

95

6. xΓyk, A ∧ B `G B (Rule (mp) on 5 and 2)

7. xΓyk, A ∧ B,B `G C (Lemma G.1.2 on 4 and 1)

8. xΓyk, A ∧ B `G C (Lemma G.1.2 on 6 and 7)

Case.
Γ k−→ pAq

Γ k−→ pAq ∨ pBq
∨ R1

1. xΓyk `G A (i.h. on premise)

2. xΓyk `G A ⊃ (A ∨ B) (Rule (ax) and (disj1))

3. xΓyk `G A ∨ B (Rule (mp) on 2 and 1)

Case.
Γ k−→ pBq

Γ k−→ pAq ∨ pBq
∨ R2

1. xΓyk `G B (i.h. on premise)

2. xΓyk `G B ⊃ (A ∨ B) (Rule (ax) and (disj2))

3. xΓyk `G A ∨ B (Rule (mp) on 2 and 1)

Case.
Γ, pAq ∨ pBq, pAq k−→ pCq Γ, pAq ∨ pBq, pBq k−→ pCq

Γ, pAq ∨ pBq k−→ pCq
∨ L

1. xΓyk, A ∨ B,A `G C (i.h. on 1st premise)

2. xΓyk, A ∨ B,B `G C (i.h. on 2nd premise)

3. xΓyk, A ∨ B `G A ⊃ C (Theorem G.2 on 1)

4. xΓyk, A ∨ B `G B ⊃ C (Theorem G.2 on 2)

5. xΓyk, A ∨ B `G (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)) (Rule (ax) and (disj3))

6. xΓyk, A ∨ B `G (B ⊃ C) ⊃ ((A ∨ B) ⊃ C) (Rule (mp) on 5 and 3)

7. xΓyk, A ∨ B `G (A ∨ B) ⊃ C (Rule (mp) on 6 and 4)

8. xΓyk, A ∨ B,A ∨ B `G C (Theorem G.2 on 7)

9. xΓyk, A ∨ B `G A ∨ B (Rule (use))

10. xΓyk, A ∨ B `G C (Lemma G.1.2 on 9 and 8)

Case.
Γ k−→ >

>R

1. xΓyk `G > (Rule (ax) and (true))

96

Case.
Γ,⊥ k−→ pCq

⊥L

1. xΓyk `G ⊥ ⊃ C (Rule (ax) and (false))

2. xΓyk,⊥ `G C (Theorem G.2)

Case.
Γ, pAq k−→ pBq

Γ k−→ pAq ⊃ pBq
⊃R

1. xΓyk, A `G B (i.h. on premise)

2. xΓyk `G A ⊃ B (Theorem G.2)

Case.
Γ, pAq ⊃ pBq k−→ pAq Γ, pAq ⊃ pBq, pBq k−→ pCq

Γ, pAq ⊃ pBq k−→ pCq
⊃L

1. xΓyk, A ⊃ B `G A (i.h. on 1st premise)

2. xΓyk, A ⊃ B,B `G C (i.h. on 2nd premise)

3. xΓyk, A ⊃ B `G A ⊃ B (Rule (use))

4. xΓyk, A ⊃ B `G B (Rule (mp) on 3 and 1)

5. xΓyk, A ⊃ B `G C (Lemma G.1.2 on 4 and 2)

Proof of (2).

Case.
Γ, d claims k′ says pBq, k′ says pBq

d−→ k says pAq d � d

Γ, d claims k′ says pBq
d−→ k says pAq

claims

1. Γ, d claims k′ says pBq, k′ claims pBq
d−→ k says pAq (Lemma G.5.1 on premise)

2. xΓyd, k′ says B `G k says A (i.h. on 1; the sequent in 1 is d-regular)

Case.
Γ|k

k−→ pAq

Γ d−→ k says pAq
saysR

By d-regularity, Γ|k must have the form k claims pB1q, . . . , k claims pBnq, where
d claims k says pBiq ∈ Γ. Clearly, the premise is k-regular.

1. B1, . . . , Bn `G A (i.h. (1) on premise)

2. · `G (B1 ∧ . . . ∧ Bn) ⊃ A (Theorem G.2)

3. · `G k says ((B1 ∧ . . . ∧ Bn) ⊃ A) (Rule (nec))

4. · `G (k says B1 ∧ . . . ∧ k says Bn) ⊃ k says A (Rule (ax), (K), and rule (mp))

97

5. k says B1, . . . , k says Bn `G k says A (Theorem G.2)

6. {k says B1, . . . , k says Bn} ⊆ xΓyd (Defn.; d claims k says pBiq ∈ Γ)

7. xΓyd `G k says A (Lemma G.1.1 on 5 using 6)

Theorem G.10 (Correctness; Theorem 5.4). ` A in IIK if and only if · `−→ pAq in
DTL0.

Proof. Suppose ` A in IIK. Then by Lemma G.4, · `−→ pAq.
Conversely, suppose that · `−→ pAq. Pick any principal k in IIK. By Theorem B.1,

· k−→ pAq. Using Lemma G.9.1, we get · `G A in IIK’s generalized axiomatic system.
Finally, using Theorem G.3, we have ` A in IIK.

H Proofs from Section 5.4

In this appendix we prove that the translation from SL to DTL0 is correct (Theorem 5.5).
First we prove a lemma about proofs in SL that is needed to establish the theorem.

Lemma H.1 (Basic properties of SL). The following hold for the inference system of
SL.

1. (Weakening) If ∆ `Γ G then ∆, A `Γ G.

2. (Substitution) If ∆ `Γ P and ∆, P `Γ G then ∆ `Γ G.

Proof. (1) follows by an induction on the derivation of ∆ `Γ G. (2) follows by an in-
duction on the derivation of ∆, P `Γ G. We show below the cases in this proof.

Case.
(P ′ ← G1, . . . , Gn) ∈ ∆, P (∆, P `Γ Gi)i∈{1,...,n}

∆, P `Γ P
′ bc (Non-principal case)

1. (P ′ ← G1, . . . , Gn) ∈ ∆ (From 1st premise)

2. (∆ `Γ Gi)i∈{1,...,n} (i.h. on 2nd premise)

3. ∆ `Γ P
′ (Rule (bc) on 1 and 2)

Case.
P ∈ ∆, P (No other premise)

∆, P `Γ P
bc (Principal Case)

1. ∆ `Γ P (Given assumption)

Case.
(K ′ : ∆′) ∈ Γ ∆′ `Γ P

′

∆, P `Γ K
′ says P ′

says

1. ∆ `Γ K
′ says P ′ (Rule (says) on the two premises)

98

H.1 Proof of Soundness

Now we prove soundness of the translation.

Lemma H.2 (Soundness of Translation). Suppose (K : ∆) ∈ Γ. Then ∆ `Γ G in SL
implies that pΓq, p∆q K−→ pGq in DTL0.

Proof. We induct on the derivation of ∆ `Γ G, and case analyze its last rule.

Case.
(P ← G1, . . . , Gn) ∈ ∆ (∆ `Γ Gi)i∈{1,...,n}

∆ `Γ P
bc

1. ((pG1q ∧ . . . ∧ pGnq) ⊃ P) ∈ p∆q (Assumption (P ← G1, . . . , Gn) ∈ ∆)

2. pΓq, p∆q K−→ pGiq (i.h. on 2nd premise)

3. pΓq, p∆q K−→ pG1q ∧ . . . ∧ pGnq (Rule (∧R))

4. pΓq, p∆q, P K−→ P (Rule (init))

5. pΓq, p∆q K−→ P (Rule (⊃L) on 3 and 4 using 1)

Case.
(K ′ : ∆′) ∈ Γ ∆′ `Γ P

∆ `Γ K
′ says P

says

Let Γ = (Ki : ∆i)i∈{1,...,m}, where each ∆i = B1,i, . . . , Bni,i. Then pΓq = (` says
Ki says pB1,iq, . . . , ` says Ki says pBni,iq)i∈{1,...,m}. Further assume that K ′ = Kt (where
t ∈ {1, . . . ,m}), so that ∆′ = B1,t, . . . , Bnt,t.

1. (` says Ki says pB1,iq, . . . , ` says Ki says pBni,iq)i∈{1,...,m}, pB1,tq, . . . , pBnt,tq
Kt−−→

P (i.h. on premise)

2. (` claims Ki says pB1,iq, . . . , ` claims Ki says pBni,iq)i∈{1,...,m}, pB1,tq, . . . , pBnt,tq
Kt−−→

P (Lemma G.5.1)

3. (` claims Ki says pB1,iq, . . . , ` claims Ki says pBni,iq)i∈{1,...,m}
Kt−−→ P

(Weakening, Rules (claims), (saysL) and (claims))

4. (` claims Ki says pB1,iq, . . . , ` claims Ki says pBni,iq)i∈{1,...,m}
`−→ Kt says P

(Rule (saysR))

5. (` claims Ki says pB1,iq, . . . , ` claims Ki says pBni,iq)i∈{1,...,m},∆
K−→ ` says Kt says

P (Rule (saysR))

6. (` says Ki says pB1,iq, . . . , ` says Ki says pBni,iq)i∈{1,...,m},∆
K−→ ` says Kt says P

(Weakening and Rule (saysL))

99

H.2 Proof of Completeness

To prove completeness of the translation, we carefully characterize DTL0 sequents that
may occur in the proof of a translated Soutei query. We call these sequents regular
sequents. As a general convention, we use the letter k to denote principals in SL, and
the letter K to denote principals in DTL0. The latter may either be principals from
SL, or `. In addition to Γ, we also use the letter Φ to denote DTL0 hypothesis. (The
categorical judgments allowed in the hypothesis denoted by the symbols Γ and Φ differ,
as described below.)

Definition H.3 (Regular Hypothesis). A DTL0 hypothesis Γ is called 0-regular if the
following hold:

1. All assumptions in Γ have the form ` claims k says pAq or k claims A, where A
denotes an arbitrary SL clause.

2. k claims pAq ∈ Γ implies ` claims k says pAq ∈ Γ

If k is a principal in SL, we call the DTL0 hypothesis Γ,Φ k-regular if the following hold:

1. Γ is a 0-regular hypothesis.

2. All assumptions in Φ have the form P or pAq, where P denotes an arbitrary atomic
formula, and A denotes an arbitrary SL clause.

3. pAq ∈ Φ and A 6= P implies k claims pAq ∈ Γ.

Definition H.4 (Regular Sequents). We call a DTL0 sequent α-regular, if it has the
form Γ,Φ k−→ pGq, where Γ,Φ is a k-regular hypothesis, and G is an SL goal.

A DTL0 sequent is called β-regular if it has the form Γ `−→ k says P , where Γ is a
0-regular hypothesis.

Next we define an inverse translation x·y from regular hypothesis to hypothesis and
assertions of SL.

Definition H.5 (Inverse Translation). If Γ is 0-regular then we define the SL hypothesis
xΓy as follows:

xΓy = {k : {A | ` claims k says pAq ∈ Γ} | k ∈ SL}

Similarly, if Γ,Φ is k-regular, we define the SL assertion xΓ,Φyk as follows:

xΓ,Φyk = {A | ` claims k says pAq ∈ Γ} ∪ {P | P ∈ Φ}

We now prove completeness of the translation.

Lemma H.6 (Completeness of Translation). The following hold:

1. (α-regular) If Γ,Φ k−→ pGq is α-regular and provable in DTL0, then xΓ,Φyk `xΓy G
in SL.

2. (β-regular) If Γ `−→ k says P is β-regular and provable in DTL0, then · `xΓy k says P
in SL.

100

Proof. We prove both statements simultaneously by induction on the depths of the given
derivations in DTL0. We remind the reader that A denotes a clause from SL, not a DTL0

formula. We analyze cases on the last rule in the given derivation.

Proof of (1).

Case.
P atomic

Γ, (Φ, P) k−→ P
init

Observe that by definition, P ∈ xΓ, (Φ, P)yk.

1. xΓ, (Φ, P)yk `xΓy P (Rule (bc))

Case.
(Γ, k claims pAq), (Φ, pAq) k−→ pGq k � k

(Γ, k claims pAq),Φ k−→ pGq
claims

Note that the premise is α-regular.

1. x(Γ, k claims pAq), (Φ, pAq)yk `xΓ,kclaimspAqy G (i.h. on premise)

2. x(Γ, k claims pAq), (Φ, pAq)yk = x(Γ, k claims pAq),Φyk (Defn.)

3. x(Γ, k claims pAq),Φyk `xΓ,kclaimspAqy G (1, 2)

Case.
(Γ, ` claims k′ says pAq), k′ says pAq,Φ k−→ pGq ` � k

(Γ, ` claims k′ says pAq),Φ k−→ pGq
claims

1. (Γ, ` claims k′ says pAq, k′ claims pAq),Φ k−→ pGq (Lemma G.5.1 on premise)

2. x(Γ, ` claims k′ says pAq, k′ claims pAq),Φyk `xΓ,`claimsk′sayspAq,k′claimspAqy G

(i.h. on 1; the sequent in 1 is α-regular)

3. x(Γ, ` claims k′ says pAq, k′ claims pAq),Φyk = x(Γ, ` claims k′ says pAq),Φyk

(Defn.)

4. xΓ, ` claims k′ says pAq, k′ claims pAqy = xΓ, ` claims k′ says pAqy (Defn.)

5. x(Γ, ` claims k′ says pAq),Φyk `xΓ,`claimsk′sayspAqy G (2, 3, 4)

Case.
Γ|`

`−→ k′ says P

Γ,Φ k−→ ` says k′ says P
saysR

Note that the premise is β-regular.

1. · `xΓ|`y k
′ says P (i.h. (2) on the premise)

2. xΓ|`y = xΓy (Defn.)

3. · `xΓy k
′ says P (1, 2)

101

4. xΓ,Φyk `xΓy k
′ says P (Lemma H.1.1 on 3)

Case.

Γ, (Φ, (pG1q, . . . , pGnq) ⊃ P) k−→ pG1q ∧ . . . ∧ pGnq
Γ, (Φ, (pG1q, . . . , pGnq) ⊃ P, P) k−→ pGq

Γ, (Φ, (pG1q, . . . , pGnq) ⊃ P) k−→ pGq
⊃L

1. Γ, (Φ, (pG1q, . . . , pGnq) ⊃ P) k−→ pGiq (Lemma G.5.2 on 1st premise)

2. xΓ, (Φ, (pG1q, . . . , pGnq) ⊃ P)yk `xΓy Gi (i.h. on 1)

3. k claims (pG1q, . . . , pGnq) ⊃ P ∈ Γ (Defn. of k-regular)

4. ` claims k says ((pG1q, . . . , pGnq) ⊃ P) ∈ Γ (Defn. of 0-regular and 3)

5. P ← G1, . . . , Gn ∈ xΓ, (Φ, (pG1q, . . . , pGnq) ⊃ P)yk (Defn. of x·yk and 4)

6. xΓ, (Φ, (pG1q, . . . , pGnq) ⊃ P)yk `xΓy P (Rule (bc) on 5 and 2)

7. xΓ, (Φ, (pG1q, . . . , pGnq) ⊃ P)yk, P `xΓy G (i.h. on 2nd premise)

8. xΓ, (Φ, (pG1q, . . . , pGnq) ⊃ P)yk `xΓy G (Lemma H.1.2 on 6 and 7)

Proof of (2).

Case.
Γ, ` claims k′ says pAq, k′ says pAq

`−→ k says P ` � `

Γ, ` claims k′ says pAq
`−→ k says P

claims

1. Γ, ` claims k′ says pAq, k′ claims pAq
`−→ k says P (Lemma G.5.1 on premise)

2. · `xΓ,`claimsk′sayspAq,k′claimspAqy k says P (i.h. on 1)

3. xΓ, ` claims k′ says pAq, k′ claims pAqy = xΓ, ` claims k′ says pAqy (Defn.)

4. · `xΓ,`claimsk′sayspAqy k says P (2, 3)

Case.
Γ|k

k−→ P

Γ `−→ k says P
saysR

Note that the premise is α-regular (with Φ = ·).

1. xΓ|kyk `xΓ|ky P (i.h. (1) on premise)

2. xΓ|ky = xΓy (Defn.)

3. xΓ|kyk `xΓy P (1, 2)

4. k : xΓ|kyk ∈ xΓy (Defn.)

5. · `xΓy K says P (Rule (says) on 4 and 3)

102

Theorem H.7 (Correctness; Theorem 5.5). Suppose (K : ∆) ∈ Γ. Then ∆ `Γ G in SL
if and only if pΓq, p∆q K−→ pGq in DTL0.

Proof. Suppose (K : ∆) ∈ Γ and ∆ `Γ G in SL. Then pΓq, p∆q K−→ pGq by Lemma H.2.
Conversely, suppose that (K : ∆) ∈ Γ and pΓq, p∆q K−→ pGq in DTL0. Let

Γ = (Ki : ∆i)i∈{1,...,m}, where each ∆i = A1,i, . . . , Ani,i. Then pΓq = (` says Ki says
pA1,iq, . . . , ` says Ki says pAni,iq)i∈{1,...,m}. Further assume that K = Kt (where
t ∈ {1, . . . ,m}), so that ∆ = A1,t, . . . , Ant,t. Then we have,

1. (` says Ki says pA1,iq, . . . , ` says Ki says pAni,q)i∈{1,...,m}, pA1,tq, . . . , pAnt,tq
Kt−−→

pGq (Assumption)

2. (` claims Ki says pA1,iq, . . . , ` claims Ki says pAni,iq)i∈{1,...,m}, pA1,tq, . . . , pAnt,tq
Kt−−→

pGq (Lemma G.5.1)

3. (` claims Ki says pA1,iq, . . . , ` claims Ki says pAni,iq)i∈{1,...,m},Kt claims pA1,tq, . . . ,

Kt claims pAnt,tq, pA1,tq, . . . , pAnt,tq
Kt−−→ pGq (Weakening)

4. Γ = x(` claims Ki says pA1,iq, . . . , ` claims Ki says pAni,iq)i∈{1,...,m},Kt claims
pA1,tq, . . . ,Kt claims pAnt,tqy (Defn.)

5. ∆ = x(` claims Ki says pA1,iq, . . . , ` claims Ki says pAni,iq)i∈{1,...,m},Kt claims
pA1,tq, . . . ,Kt claims pAnt,tq, pA1,tq, . . . , pAnt,tqyKt (Defn.)

6. ∆ `Γ G

(Lemma H.6.1 on 3 using 4 and 5 to abbreviate; the sequent in 3 is α-regular)

I Proofs from Section 5.5

In this appendix we prove the Theorems related to BL0 (Section 5.5). Many of these
theorems rely on the Hilbert style axiomatization for BL0, which we develop first.

I.1 The Axiomatic System for BL0

In Section 5.5, we presented some rules and axioms for the axiomatic system of BL0.
Here, we list all the rules and axioms, including those listed earlier.

` A
` K says A

nec
` A ⊃ B ` A

` B
mp

A is an axiom
` A

ax

Axioms:

103

(K says (A ⊃ B)) ⊃ ((K says A) ⊃ (K says B)) (K)
(K says A) ⊃ K ′ says K says A (Bind)
K says ((K says A) ⊃ A) (C)
A ⊃ (B ⊃ A) (imp1)
(A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)) (imp2)
A ⊃ (B ⊃ (A ∧ B)) (conj1)
(A ∧ B) ⊃ A (conj2)
(A ∧ B) ⊃ B (conj3)
A ⊃ (A ∨ B) (disj1)
B ⊃ (A ∨ B) (disj2)
(A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)) (disj3)
> (true)
⊥ ⊃ A (false)

Next, as we did for DTL0 in Appendix C, we introduce a generalized axiomatic system
for BL0. Let Γ denote a multi set of formulas (not judgments). We write Γ `G A
to mean that A may be established from assumptions Γ. The rules of the generalized
axiomatic system are:

Γ, A `G A
use

· `G A
Γ `G K says A

nec
Γ `G A ⊃ B Γ `G A

Γ `G B
mp

A is an axiom
Γ `G A

ax

Now we prove some basic properties of the generalized axiomatic system, including
the deduction theorem, and show that the generalized system reduces to the axiomatic
system when Γ is empty.

Lemma I.1 (Basic properties). The following hold.

1. (Weakening) Γ `G A implies Γ,Γ′ `G A

2. (Substitution) Γ `G A and Γ, A `G B imply Γ `G B

Proof. Exactly as for DTL0 in Lemma C.1. The proof does not rely on the axiom (4),
which is the only difference between the two systems.

Theorem I.2 (Deduction). The following hold.

1. Γ `G A ⊃ B implies Γ, A `G B

2. Γ, A `G B implies Γ `G A ⊃ B

Proof. Exactly as for DTL0 in Theorem C.2. The proof does not rely on the axiom (4),
which is the only difference between the two systems.

Theorem I.3 (G iff Axiomatic). ` A if and only if · `G A

Proof. In each direction by straightforward induction on the given derivation.

104

I.2 Proofs of Theorems 5.6 and 5.7

We simultaneously prove Theorem 5.6 (Equivalence of sequent calculus and axiomatic
system for BL0), and Theorem 5.7 (Correctness of translation from BL0 to DTL0). To
do this we establish three lemmas.

Lemma I.4 (Sequent Calculus⇒ Axiomatic System). Γ K−→ A in BL0’s sequent calculus
(Figure 5) implies · `G K says (Γ ⊃ A) in BL0’s generalized axiomatic system.

Proof. We induct on the given derivation of Γ K−→ A, and show some cases related to
claims and says. We freely use properties such as Currying in the axiomatic system.

Case.
P atomic

Γ, P K−→ P
init

1. · `G (Γ ∧ P) ⊃ P (Rule (ax) and (conj3))

2. · `G K says ((Γ ∧ P) ⊃ P) (Rule (nec))

Case.
Γ,K claims A,A

K−→ C

Γ,K claims A
K−→ C

claims

1. · `G K says ((Γ ∧ (K says A) ∧ A) ⊃ C) (i.h. on premise)

2. · `G ((Γ ∧ K says A) ⊃ A) ⊃ (((Γ ∧ K says A) ⊃ (A ⊃ (Γ ∧ (K says A) ∧ A))) ⊃
((Γ ∧ K says A) ⊃ (Γ ∧ (K says A) ∧ A))) (Rule (ax) and (imp2))

3. · `G (K says ((Γ ∧ K says A) ⊃ A)) ⊃ ((K says ((Γ ∧ K says A) ⊃ (A ⊃ (Γ ∧
(K says A) ∧ A)))) ⊃ K says ((Γ ∧ K says A) ⊃ (Γ ∧ (K says A) ∧ A)))

(Rule (ax), (K), Rule (mp))

4. · `G K says ((Γ ∧ K says A) ⊃ A) (Theorem in G, follows from (C))

5. · `G (K says ((Γ ∧ K says A) ⊃ (A ⊃ (Γ ∧ (K says A) ∧ A)))) ⊃ K says ((Γ ∧
K says A) ⊃ (Γ ∧ (K says A) ∧ A)) (Rule (mp) on 3 and 4)

6. · `G (Γ ∧ K says A) ⊃ (A ⊃ (Γ ∧ (K says A) ∧ A)) (Currying)

7. · `G K says ((Γ ∧ K says A) ⊃ (A ⊃ (Γ ∧ (K says A) ∧ A))) (Rule (nec))

8. · `G K says ((Γ ∧ K says A) ⊃ (Γ ∧ (K says A) ∧ A)) (Rule (mp) on 5 and 7)

9. · `G (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)) (Theorem in G)

10. · `G K says ((A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))) (Rule (nec))

11. · `G (K says (A ⊃ B)) ⊃ ((K says (B ⊃ C)) ⊃ K says (A ⊃ C))

(Rule (ax), K, rule (mp))

105

12. · `G (K says ((Γ ∧ K says A) ⊃ (Γ ∧ (K says A) ∧ A))) ⊃ ((K says ((Γ ∧ (K says
A) ∧ A) ⊃ C)) ⊃ K says ((Γ ∧ K says A) ⊃ C)) (Instantiate 11)

13. · `G (K says ((Γ ∧ (K says A) ∧ A) ⊃ C)) ⊃ K says ((Γ ∧ K says A) ⊃ C)

(Rule (mp) on 12 and 8)

14. · `G K says ((Γ ∧ K says A) ⊃ C) (Rule (mp) on 13 and 1)

Case.
Γ| K−→ A

Γ K′
−−→ K says A

saysR

Let Γ| = K1 says A1, . . . ,Kn says An

1. · `G K says ((K1 says A1 ∧ . . . ∧ Kn says An) ⊃ A) (i.h. on premise)

2. · `G (K says K1 says A1 ∧ . . . ∧ K says Kn says An) ⊃ K says A (Rule (ax), K,
and Rule (mp))

3. K says K1 says A1, . . . ,K says Kn says An `G K says A (Theorem I.2)

4. · `G (Ki says Ai) ⊃ (K says Ki says Ai) (Rule (ax) and (Bind))

5. Ki says Ai `G K says Ki says Ai (Theorem I.2)

6. K1 says A1, . . . ,Kn says An `G K says A (Lemma I.1.2 on 5 and 3)

7. Γ `G K says A (Lemma I.1.1)

8. · `G Γ ⊃ K says A (Theorem I.2)

9. · `G K ′ says (Γ ⊃ K says A) (Rule (nec))

Case.
Γ,K says A,K claims A

K′
−−→ C

Γ,K says A
K′
−−→ C

saysL

1. · `G K ′ says ((Γ ∧ (K says A) ∧ (K says A)) ⊃ C) (i.h. on premise)

2. · `G (Γ ∧ K says A) ⊃ (Γ ∧ (K says A) ∧ (K says A)) (Theorem in G)

3. · `G K ′ says ((Γ ∧ K says A) ⊃ (Γ ∧ (K says A) ∧ (K says A))) (Rule (nec))

4. · `G (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)) (Theorem in G)

5. · `G K ′ says ((A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))) (Rule (nec))

6. · `G (K ′ says (A ⊃ B)) ⊃ ((K ′ says (B ⊃ C)) ⊃ K ′ says (A ⊃ C))

(Rule (ax), K, rule (mp))

7. · `G (K ′ says ((Γ ∧ K says A) ⊃ (Γ ∧ (K says A) ∧ (K says A)))) ⊃ ((K ′ says
((Γ ∧ (K says A) ∧ (K says A)) ⊃ C)) ⊃ K ′ says ((Γ ∧ K says A) ⊃ C))

106

(Instantiate 6)

8. · `G (K ′ says ((Γ ∧ (K says A) ∧ (K says A)) ⊃ C)) ⊃ K ′ says ((Γ ∧ K says A) ⊃
C) (Rule (mp) on 7 and 3)

9. · `G K ′ says ((Γ ∧ K says A) ⊃ C) (Rule (mp) on 8 and 1)

Lemma I.5 (Soundness of Translation). If ` A in BL0, then for every K, · K−→ [[A]] in
DTL0.

Proof. We induct on the derivation of ` A, and case analyze the last rule.

Case.
` A

` K ′ says A
nec

To show: · K−→ ` says K ′ says [[A]].

1. · K
′
−−→ [[A]] (i.h. on premise)

2. · `−→ K ′ says [[A]] (Rule (saysR))

3. · K−→ ` says K ′ says [[A]] (Rule (saysR))

Case.
` A ⊃ B ` A

` B
mp

1. · K−→ [[A]] ⊃ [[B]] (i.h. on 1st premise)

2. · K−→ [[A]] (i.h. on 2nd premise)

3. [[A]], [[A]] ⊃ [[B]] K−→ [[B]] (Theorem in DTL0)

4. [[A]] ⊃ [[B]] K−→ [[B]] (Theorem B.2 on 3 and 2)

5. · K−→ [[B]] (Theorem B.2 on 4 and 1)

Case.
A is an axiom

` A
ax

To show: · K−→ [[A]]. We case analyze all the axioms, showing only some of the
important cases here. The other cases are straightforward.

Case. (Axiom K) A = (K ′ says (A′ ⊃ B′)) ⊃ ((K ′ says A′) ⊃ (K ′ says B′))

To show: · K−→ (` says K ′ says ([[A′]] ⊃ [[B′]])) ⊃ ((` says K ′ says [[A′]]) ⊃ (` says
K ′ says [[B′]]))

1. [[A′]] ⊃ [[B′]], [[A′]] K′
−−→ [[A′]] (Theorem B.3)

107

2. [[A′]] ⊃ [[B′]], [[A′]], [[B′]] K′
−−→ [[B′]] (Theorem B.3)

3. [[A′]] ⊃ [[B′]], [[A′]] K′
−−→ [[B′]] (Rule (⊃L))

4. K ′ claims ([[A′]] ⊃ [[B′]]), [[A′]] ⊃ [[B′]],K ′ claims [[A′]], [[A′]] K′
−−→ [[B′]]

(Weakening)

5. K ′ claims ([[A′]] ⊃ [[B′]]),K ′ claims [[A′]] K′
−−→ [[B′]] (Rule (claims) twice)

6. K ′ says ([[A′]] ⊃ [[B′]]),K ′ claims ([[A′]] ⊃ [[B′]]),K ′ says [[A′]],K ′ claims [[A′]] `−→
K ′ says [[B′]] (Rule (saysR))

7. K ′ says ([[A′]] ⊃ [[B′]]),K ′ says [[A′]] `−→ K ′ says [[B′]] (Rule (saysL) twice)

8. ` claims K ′ says ([[A′]] ⊃ [[B′]]),K ′ says ([[A′]] ⊃ [[B′]]), ` claims K ′ says

[[A′]],K ′ says [[A′]] `−→ K ′ says [[B′]] (Weakening)

9. ` claims K ′ says ([[A′]] ⊃ [[B′]]), ` claims K ′ says [[A′]] `−→ K ′ says [[B′]]

(Rule (claims) twice)

10. ` claims K ′ says ([[A′]] ⊃ [[B′]]), ` says K ′ says ([[A′]] ⊃ [[B′]]), ` claims K ′ says

[[A′]], ` says K ′ says [[A′]] K−→ ` says K ′ says [[B′]] (Rule (saysR))

11. ` says K ′ says ([[A′]] ⊃ [[B′]]), ` says K ′ says [[A′]] K−→ ` says K ′ says [[B′]]

(Rule (saysL) twice)

12. · K−→ (` says K ′ says ([[A′]] ⊃ [[B′]])) ⊃ ((` says K ′ says [[A′]]) ⊃ (` says K ′ says
[[B′]])) (Rule (⊃R) twice)

Case. (Axiom Bind) A = (K ′ says A′) ⊃ K ′′ says K ′ says A′

To show: · K−→ (` says K ′ says [[A′]]) ⊃ ` says K ′′ says ` says K ′ says [[A′]]

1. ` claims K ′ says [[A′]],K ′ says [[A′]],K ′ claims [[A′]], [[A′]] K′
−−→ [[A′]]

(Theorem B.3)

2. ` claims K ′ says [[A′]],K ′ says [[A′]],K ′ claims [[A′]] K′
−−→ [[A′]] (Rule (claims))

3. ` claims K ′ says [[A′]],K ′ says [[A′]] K′
−−→ [[A′]] (Rule (saysL))

4. ` claims K ′ says [[A′]] K′
−−→ [[A′]] (Rule (claims))

5. ` claims K ′ says [[A′]] `−→ K ′ says [[A′]] (Rule (saysR))

6. ` claims K ′ says [[A′]] K′′
−−→ ` says K ′ says [[A′]] (Rule (saysR))

7. ` claims K ′ says [[A′]] `−→ K ′′ says ` says K ′ says [[A′]] (Rule (saysR))

8. ` claims K ′ says [[A′]], ` says K ′ says [[A′]] K−→ ` says K ′′ says ` says K ′ says [[A′]]

(Rule (saysR))

9. ` says K ′ says [[A′]] K−→ ` says K ′′ says ` says K ′ says [[A′]] (Rule (saysL))

10. · K−→ (` says K ′ says [[A′]]) ⊃ ` says K ′′ says ` says K ′ says [[A′]] (Rule (⊃R))

108

Case. (Axiom C) A = K ′ says ((K ′ says A′) ⊃ A′)

To show: · K−→ ` says K ′ says ((` says K ′ says [[A′]]) ⊃ [[A′]])

1. ` claims K ′ says [[A′]],K ′ says [[A′]],K ′ claims [[A′]], [[A′]] K′
−−→ [[A′]]

(Theorem B.3)

2. ` claims K ′ says [[A′]],K ′ says [[A′]],K ′ claims [[A′]] K′
−−→ [[A′]] (Rule (claims))

3. ` claims K ′ says [[A′]],K ′ says [[A′]] K′
−−→ [[A′]] (Rule (saysL))

4. ` claims K ′ says [[A′]] K′
−−→ [[A′]] (Rule (claims))

5. ` says K ′ says [[A′]], ` claims K ′ says [[A′]] K′
−−→ [[A′]] (Weakening)

6. ` says K ′ says [[A′]] K′
−−→ [[A′]] (Rule (saysL))

7. · K
′
−−→ (` says K ′ says [[A′]]) ⊃ [[A′]] (Rule (⊃R))

8. · `−→ K ′ says ((` says K ′ says [[A′]]) ⊃ [[A′]]) (Rule (saysR))

9. · K−→ ` says K ′ says ((` says K ′ says [[A′]]) ⊃ [[A′]]) (Rule (saysR))

Finally, we seek to show that whenever [[Γ]] K−→ [[A]] in DTL0, it is the case that
Γ K−→ A in BL0. To do this, we syntactically characterize the sequents that may occur
in a proof of [[Γ]] K−→ [[A]]. We call these sequents regular sequents. We further categorize
regular sequents into two: α-regular and β-regular. As a general convention, we use
the lowercase letter k to denote principals from BL0, i.e., principals distinct from `. By
assumption, such principals are unrelated to each other in the order �.

Definition I.6 (Regular Sequents). A DTL0 sequent is called regular if it has one of
the two forms:

1. (α-regular) Γ k−→ [[A]], where Γ contains assumptions of following forms only: [[B]],
k says [[B]], k claims [[B]], and ` claims k says [[B]].

2. (β-regular) Γ `−→ k says [[A]], where Γ contains assumptions of the following forms
only: k says [[B]], k claims [[B]], and ` claims k says [[B]].

Note that the difference between the hypothesis allowed in α-regular and β-regular
sequents is that the former may contain assumptions of the form [[B]] whereas the latter
may not.

Next, we define an inverse translation from hypothesis of regular sequents to BL0.
We denote the translation using the notation x·y.

Definition I.7 (Inverse Translation). The inverse translation for regular hypothesis xΓy
is defined pointwise on the assumptions, where the inverse translation of assumptions is
defined as follows:

x[[A]]y = A
xk says [[A]]y = k claims A
xk claims [[A]]y = k claims A

x` claims k says [[A]]y = k claims A

109

Lemma I.8 (Completeness of Translation). The following hold.

1. If Γ k−→ [[A]] is α-regular and provable in DTL0, then xΓy k−→ A is provable in BL0.

2. If Γ `−→ k says [[A]] is β-regular and provable in DTL0, then xΓy k−→ A is provable in
BL0.

Proof. We simultaneously prove the two clauses of the Lemma by induction on the
derivations of the given regular sequents. For each clause, we analyze cases of the last
rule in the derivation. We assume that weakening and strengthening for hypothesis
holds in BL0. These may be established easily by induction on derivations.

Proof of (1).

Case.
P atomic

Γ, [[P]] k−→ [[P]]
init

1. xΓy, P k−→ P (Rule (init))

Case.
Γ, k claims [[A]], [[A]] k−→ [[C]] k � k

Γ, k claims [[A]] k−→ [[C]]
claims

1. xΓy, k claims A,A
k−→ C (i.h. on premise)

2. xΓy, k claims A
k−→ C (Rule (claims))

Case.
Γ, ` claims k′ says [[A]], k′ says [[A]] k−→ [[C]] ` � k

Γ, ` claims k′ says [[A]] k−→ [[C]]
claims

1. xΓy, k′ claims A, k′ claims A
k−→ C (i.h. on premise)

2. xΓy, k′ claims A
k−→ C (Strengthening)

Case.
Γ|`

`−→ k′ says [[A]]

Γ k−→ ` says k′ says [[A]]
saysR

By definition, ` says k′ says [[A]] = [[k′ says A]]. Therefore we need to show that
xΓy k−→ k′ says A. Assume that Γ|` = ` claims k1 says [[A1]], . . . , ` claims kn says [[An]].
Note that xΓy ⊇ k1 claims A1, . . . , kn claims An.

1. k1 claims A1, . . . , kn claims An
k′
−→ A (i.h. (2) on premise)

2. k1 claims A1, . . . , kn claims An
k−→ k′ says A (Rule (saysR))

3. xΓy k−→ k′ says A (Weakening)

110

Note that the application of (saysR) in step 2 is allowed in BL0, but not in DTL0.

Case.
Γ, k′ says [[A]], k′ claims [[A]] k−→ [[C]]

Γ, k′ says [[A]] k−→ [[C]]
saysL

1. xΓy, k′ claims A, k′ claims A
k−→ C (i.h. on premise)

2. xΓy, k′ claims A
k−→ C (Strengthening)

Case.
Γ, ` says k′ says [[A]], ` claims k′ says [[A]] k−→ [[C]]

Γ, ` says k′ says [[A]] k−→ [[C]]
saysL

1. xΓy, k′ says A, k′ claims A
k−→ C (i.h. on premise)

2. xΓy, k′ says A
k−→ C (Rule (saysL))

Case.
Γ k−→ [[A]] Γ k−→ [[B]]

Γ k−→ [[A]] ∧ [[B]]
∧R

1. xΓy k−→ A (i.h. on 1st premise)

2. xΓy k−→ B (i.h. on 2nd premise)

3. xΓy k−→ A ∧ B (Rule (∧R))

Case.
Γ, [[A]] ∧ [[B]], [[A]], [[B]] k−→ [[C]]

Γ, [[A]] ∧ [[B]] k−→ [[C]]
∧L

1. xΓy, A ∧ B,A,B k−→ C (i.h. on premise)

2. xΓy, A ∧ B k−→ C (Rule (∧L))

Case.
Γ k−→ [[A]]

Γ k−→ [[A]] ∨ [[B]]
∨ R1

1. xΓy k−→ A (i.h. on premise)

2. xΓy k−→ A ∨ B (Rule (∨ R1))

Case.
Γ k−→ [[B]]

Γ k−→ [[A]] ∨ [[B]]
∨ R2

1. xΓy k−→ B (i.h. on premise)

111

2. xΓy k−→ A ∨ B (Rule (∨ R2))

Case.
Γ, [[A]] ∨ [[B]], [[A]] k−→ [[C]] Γ, [[A]] ∨ [[B]], [[B]] k−→ [[C]]

Γ, [[A]] ∨ [[B]] k−→ [[C]]
∨ L

1. xΓy, A ∨ B,A k−→ C (i.h. on 1st premise)

2. xΓy, A ∨ B,B k−→ C (i.h. on 2nd premise)

3. xΓy, A ∨ B k−→ C (Rule (∨L))

Case.
Γ k−→ >

>R

1. xΓy k−→ > (Rule (>R))

Case.
Γ,⊥ k−→ [[C]]

⊥L

1. xΓy,⊥ k−→ C (Rule (⊥L))

Case.
Γ, [[A]] k−→ [[B]]

Γ k−→ [[A]] ⊃ [[B]]
⊃R

1. xΓy, A k−→ B (i.h. on premise)

2. xΓy k−→ A ⊃ B (Rule (⊃R))

Case.
Γ, [[A]] ⊃ [[B]] k−→ [[A]] Γ, [[A]] ⊃ [[B]], [[B]] k−→ [[C]]

Γ, [[A]] ⊃ [[B]] k−→ [[C]]
⊃L

1. xΓy, A ⊃ B k−→ A (i.h. on 1st premise)

2. xΓy, A ⊃ B,B k−→ C (i.h. on 2nd premise)

3. xΓy, A ⊃ B k−→ C (Rule (⊃L))

Proof of (2).

Case.
Γ, ` claims k′ says [[A]], k′ says [[A]] `−→ k says [[C]] ` � `

Γ, ` claims k′ says [[A]] `−→ k says [[C]]
claims

1. xΓy, k′ claims A, k′ claims A
k−→ C (i.h. on premise)

112

2. xΓy, k′ claims A
k−→ C (Strengthening)

Case.
Γ|k

k−→ [[A]]

Γ `−→ k says [[A]]
saysR

1. xΓ|ky
k−→ A (i.h. (1) on premise)

2. xΓy k−→ A (Weakening)

Case.
Γ, k′ says [[A]], k′ claims [[A]] `−→ k says [[C]]

Γ, k′ says [[A]] `−→ k says [[C]]
saysL

1. xΓy, k′ claims A, k′ claims A
k−→ C (i.h. on premise)

2. xΓy, k′ claims A
k−→ C (Strengthening)

No other cases apply.

We now prove Theorems 5.6 and 5.7.

Theorem I.9 (Equivalence; Theorem 5.6). · K−→ A in BL0’s sequent calculus if and only
if ` K says A in BL0’s axiomatic system.

Proof. Suppose · K−→ A in BL0’s sequent calculus. By Lemma I.4, · `G K says (> ⊃ A)
in BL0’s generalized axiomatic system. By Theorem I.3, ` K says (> ⊃ A). Now, as in
the proof of Corollary C.10, this implies ` K says A.

Conversely, suppose that ` K says A in BL0’s axiomatic system. By Lemma I.5,
· `−→ ` says K says [[A]] in DTL0. There is only one rule that can applied to derive this:
(saysR). Hence, · `−→ K says [[A]]. Again, only the rule (saysR) can derive this. Thus
· K−→ [[A]]. Now by Lemma I.8.1, · K−→ A in BL0’s sequent calculus.

Theorem I.10 (Correctness; Theorem 5.7). Γ K−→ A in BL0’s sequent calculus if and
only if [[Γ]] K−→ [[A]] in DTL0’s sequent calculus.

Proof. Suppose Γ K−→ A in BL0’s sequent calculus. Let Γ = A1, . . . , An. Then,

1. · `G K says (Γ ⊃ A) (Lemma I.4)

2. ` K says (Γ ⊃ A) (Theorem I.3)

3. · `−→ ` says K says ([[Γ]] ⊃ [[A]]) (Lemma I.5)

4. · K−→ [[Γ]] ⊃ [[A]] (Inversion)

5. · K−→ ([[A1]] ∧ . . . ∧ [[An]]) ⊃ [[A]] (Definitions)

6. [[A1]], . . . , [[An]], ([[A1]] ∧ . . . ∧ [[An]]) ⊃ [[A]] K−→ [[A]] (Basic reasoning)

113

(A atomic)
Γ, A ` A

init
�Γ ` A

�Γ,Γ′ ` �A
�R

Γ,�A,A ` C
Γ,�A ` C

�L

Γ ` A Γ ` B
Γ ` A ∧ B

∧R
Γ, A ∧ B,A ` C

Γ, A ∧ B ` C
∧ L1

Γ, A ∧ B,B ` C
Γ, A ∧ B ` C

∧ L2

Γ ` A
Γ ` A ∨ B

∨ R1
Γ ` B

Γ ` A ∨ B
∨ R2

Γ, A ∨ B,A ` C Γ, A ∨ B,B ` C
Γ, A ∨ B ` C

∨L

Γ ` >
>R

Γ,⊥ ` C
⊥L

Γ, A ` B
Γ ` A ⊃ B

⊃R
Γ, A ⊃ B ` A Γ, A ⊃ B,B ` C

Γ, A ⊃ B ` C
⊃L

Figure 7: Cut-free Sequent Calculus for CS4 (Taken from [13])

7. [[A1]], . . . , [[An]] K−→ [[A]] i.e. [[Γ]] K−→ [[A]] (Theorem B.2 on 5 and 6)

Conversely, suppose [[Γ]] K−→ [[A]]. By Lemma I.8.1, x[[Γ]]y K−→ x[[A]]y. But by defini-
tion, x[[Γ]]y = Γ and x[[A]]y = A. Therefore, Γ K−→ A.

I.3 Proof of Theorem 5.9

In this section we show that the translation from BL0 to CS4 is sound and complete
(Theorem 5.9). We use a sequent calculus for CS4, shown in Figure 7. Γ denotes a set
of formulas in CS4, and �Γ denotes a set of formulas of the form �A. This sequent
calculus is the ♦-free fragment of a sequent calculus described by Bierman et al [13],
with only the difference that we restrict initial sequents (Rule (init)) to atomic formulas.
However, we show (Lemma I.11 below) that this restricted sequent calculus admits the
general (init) rule; hence the two formulations of the sequent calculus are equivalent.
Our version reduces the technical difficulty of proving completeness of the translation. It
is shown in Bierman et al’s paper that the sequent calculus is equivalent to the axiomatic
formulation described in Section 5.1, that it admits weakening and the cut rule, and that
it has the subformula property.

Lemma I.11 (Identity). For each CS4 formula A, it is the case that Γ, A ` A.

Proof. By induction on A. We case analyze the top constructor in A. Most cases work
as in the proof of Theorem B.3. The case A = �B is new, and the case A = A1 ∧ A2

is different, because in CS4’s sequent calculus we use two left rules for ∧, whereas in
DTL0’s sequent calculus there is one left rule for ∧. We show these two cases below.

Case. A = �B. Let Γ = �Γ′,Γ′′

1. �Γ′,�B,B ` B (i.h. on B)

114

2. �Γ′,�B ` B (Rule (�L))

3. �Γ′,Γ′′,�B ` �B (Rule (�R))

Case. A = A1 ∧ A2

1. Γ, A1 ∧ A2, A1 ` A1 (i.h. on A1)

2. Γ, A1 ∧ A2 ` A1 (Rule (∧ L1))

3. Γ, A1 ∧ A2, A2 ` A2 (i.h. on A2)

4. Γ, A1 ∧ A2 ` A2 (Rule (∧ L2))

5. Γ, A1 ∧ A2 ` A1 ∧ A2 (Rule (∧ R) on 2 and 4)

Restricting initial sequents to atomic formulas allows us to prove the following in-
version theorem, which helps us simplify the completeness proof. We can also prove
completeness without this theorem, but we would have to consider many more cases.

Lemma I.12 (Inversion in CS4). If there is a derivation of Γ ` A ⊃ B in CS4’s sequent
calculus, then there is a shorter or equal derivation of Γ, A ` B.

Proof. We induct on the given derivation of Γ ` A ⊃ B, analyzing cases on the last
rule. We do not explicitly prove that the constructed derivations are shorter or equal;
the reader may verify this easily in each case.

Case.
Γ,�C,C ` A ⊃ B

Γ,�C ` A ⊃ B
�L

1. Γ,�C,C,A ` B (i.h. on premise)

2. Γ,�C,A ` B (Rule (�L))

Case.
Γ, C1 ∧ C2, C1 ` A ⊃ B

Γ, C1 ∧ C2 ` A ⊃ B
∧ L1

1. Γ, C1 ∧ C2, C1, A ` B (i.h. on premise)

2. Γ, C1 ∧ C2, A ` B (Rule (∧ L1))

Case.
Γ, C1 ∧ C2, C2 ` A ⊃ B

Γ, C1 ∧ C2 ` A ⊃ B
∧ L2

1. Γ, C1 ∧ C2, C2, A ` B (i.h. on premise)

2. Γ, C1 ∧ C2, A ` B (Rule (∧ L2))

Case.
Γ, C1 ∨ C2, C1 ` A ⊃ B Γ, C1 ∨ C2, C2 ` A ⊃ B

Γ, C1 ∨ C2 ` A ⊃ B
∨L

115

1. Γ, C1 ∨ C2, C1, A ` B (i.h. on 1st premise)

2. Γ, C1 ∨ C2, C2, A ` B (i.h. on 2nd premise)

3. Γ, C1 ∨ C2, A ` B (Rule (∨L))

Case.
Γ,⊥ ` A ⊃ B

⊥L

1. Γ,⊥, A ` B (Rule (⊥L))

Case.
Γ, A ` B

Γ ` A ⊃ B
⊃R

1. Γ, A ` B (Premise)

Case.
Γ, C1 ⊃ C2 ` C1 Γ, C1 ⊃ C2, C2 ` A ⊃ B

Γ, C1 ⊃ C2 ` A ⊃ B
⊃L

1. Γ, C1 ⊃ C2, A ` C1 (Weakening on 1st premise)

2. Γ, C1 ⊃ C2, C2, A ` B (i.h. on 2nd premise)

3. Γ, C1 ⊃ C2, A ` B (Rule (⊃L))

No other cases apply.

We also need a lemma about BL0’s sequent calculus for proving completeness.

Lemma I.13. If Γ,K says A
K′
−−→ C in BL0, then there is a shorter or equal derivation

of Γ,K claims A
K′
−−→ C.

Proof. By induction on the derivation of Γ,K says A
K′
−−→ C.

Lemma I.14 (Soundness of Translation). If Γ K−→ A in the sequent calculus of BL0,
then pΓq,K ` pAq in the sequent calculus of CS4 (where the translation of the context
pΓq is defined pointwise, and K claims A is treated as K says A).

Proof. We induct on the derivation of Γ K−→ A, analyzing cases of the last rule.

Case.
P atomic

Γ, P K−→ P
init

1. pΓq, P,K ` P (Rule (init))

Case.
Γ,K claims A,A

K−→ C

Γ,K claims A
K−→ C

claims

1. pΓq,�(K ⊃ pAq),K ⊃ pAq,K ` K (Rule (init))

116

2. pΓq,�(K ⊃ pAq),K ⊃ pAq,K, pAq ` pAq (Lemma I.11)

3. pΓq,�(K ⊃ pAq),K ⊃ pAq,K ` pAq (Rule (⊃L))

4. pΓq,�(K ⊃ pAq),K ` pAq (Rule (�L))

5. pΓq,�(K ⊃ pAq), pAq,K ` pCq (i.h. on premise)

6. pΓq,�(K ⊃ pAq),K ` pCq (Cut on 4 and 5)

Case.
Γ| K−→ A

Γ K′
−−→ K says A

saysR

Let Γ| = K1 claims A1, . . . ,Kn claims An.

1. �(K1 ⊃ pA1q), . . . ,�(Kn ⊃ pAnq),K ` pAq (i.h. on premise)

2. �(K1 ⊃ pA1q), . . . ,�(Kn ⊃ pAnq) ` K ⊃ pAq (Rule (⊃R))

3. �(K1 ⊃ pA1q), . . . ,�(Kn ⊃ pAnq) ` �(K ⊃ pAq) (Rule (�R))

4. pΓq,K ′ ` �(K ⊃ pAq) (Weakening)

Case.
Γ,K says A,K claims A

K′
−−→ C

Γ,K says A
K′
−−→ C

saysL

1. pΓq,�(K ⊃ pAq),�(K ⊃ pAq),K ′ ` pCq (i.h. on premise)

2. pΓq,�(K ⊃ pAq),K ′ ` pCq (Strengthening)

Case.
Γ K−→ A Γ K−→ B

Γ K−→ A ∧ B
∧R

1. pΓq,K ` pAq (i.h. on 1st premise)

2. pΓq,K ` pBq (i.h. on 2nd premise)

3. pΓq,K ` pAq ∧ pBq (Rule (∧R))

Case.
Γ, A ∧ B,A,B K−→ C

Γ, A ∧ B K−→ C
∧L

1. pΓq, pAq ∧ pBq, pAq, pBq,K ` pCq (i.h. on premise)

2. pΓq, pAq ∧ pBq, pAq, pBq,K ` pAq (Lemma I.11)

3. pΓq, pAq ∧ pBq, pBq,K ` pAq (Rule (∧ L1))

4. pΓq, pAq ∧ pBq, pBq,K ` pBq (Lemma I.11)

5. pΓq, pAq ∧ pBq,K ` pBq (Rule (∧ L2))

117

6. pΓq, pAq ∧ pBq, pBq,K ` pCq (Cut on 3 and 1)

7. pΓq, pAq ∧ pBq,K ` pCq (Cut on 5 and 6)

Case.
Γ K−→ A

Γ K−→ A ∨ B
∨ R1

1. pΓq,K ` pAq (i.h. on premise)

2. pΓq,K ` pAq ∨ pBq (Rule (∨ R1))

Case.
Γ K−→ B

Γ K−→ A ∨ B
∨ R2

1. pΓq,K ` pBq (i.h. on premise)

2. pΓq,K ` pAq ∨ pBq (Rule (∨ R2))

Case.
Γ, A ∨ B,A K−→ C Γ, A ∨ B,B K−→ C

Γ, A ∨ B K−→ C
∨ L

1. pΓq, pAq ∨ pBq, pAq,K ` pCq (i.h. on 1st premise)

2. pΓq, pAq ∨ pBq, pBq,K ` pCq (i.h. on 2nd premise)

3. pΓq, pAq ∨ pBq,K ` pCq (Rule (∨L))

Case.
Γ K−→ >

>R

1. pΓq,K ` > (Rule (>R))

Case.
Γ,⊥ K−→ C

⊥L

1. pΓq,⊥,K ` pCq (Rule (⊥L))

Case.
Γ, A K−→ B

Γ K−→ A ⊃ B
⊃R

1. pΓq, pAq,K ` pBq (i.h. on premise)

2. pΓq,K ` pAq ⊃ pBq (Rule (⊃R))

Case.
Γ, A ⊃ B K−→ A Γ, A ⊃ B,B K−→ C

Γ, A ⊃ B K−→ C
⊃L

1. pΓq, pAq ⊃ pBq,K ` pAq (i.h. on 1st premise)

118

2. pΓq, pAq ⊃ pBq, pBq,K ` pCq (i.h. on 2nd premise)

3. pΓq, pAq ⊃ pBq,K ` pCq (Rule (⊃L))

Next, we seek to show the converse of the above lemma, namely, if pΓq,K ` pAq
in CS4, then Γ K−→ A in BL0. Our approach is based on a careful characterization of
sequents that may occur in a proof of pΓq,K ` pAq. We call such sequents regular
sequents.

Definition I.15 (Regular Hypothesis). A CS4 hypothesis Γ is called regular if it con-
tains formulas of the form pAq and K ⊃ pAq only (A denotes an arbitrary BL0 formula).

Definition I.16 (Regular Sequents). A CS4 sequent is called regular if it has the form
Γ,K ` pAq, where Γ is a regular hypothesis.

Next, we define an inverse translation from regular sequents to BL0 sequents.

Definition I.17 (Inverse Translation). The inverse translation x·y for regular hypothesis
is defined pointwise, where the inverse translation for formulas is defined as follows.

xpAqy = A
xK ⊃ pAqy = K claims A

A regular sequent Γ,K ` pAq is inverse translated to xΓy K−→ A.

The following completeness lemma contains two statements that we prove by simul-
taneous induction. The second statement is the actual completeness that we need. The
first statement is needed for induction to work.

Lemma I.18 (Completeness of Translation). Let Γ be a regular hypothesis.

1. If Γ,K ` K ′ in CS4 and K 6= K ′, then xΓy K−→ C for any C in BL0.

2. If Γ,K ` pAq in CS4, then xΓy K−→ A in BL0.

Proof. We induct on the depth of the given derivations, and analyze cases of the last
rule in the derivations.

Proof of (1).

Case.
Γ,K ` K ′

init

1. K = K ′ (K ′ 6∈ Γ by regularity)

2. Contradiction (Assumption K 6= K ′ and 1)

3. xΓy K−→ C (RAA)

119

Case.
Γ,�(K ′′ ⊃ pAq),K ′′ ⊃ pAq,K ` K ′

Γ,�(K ′′ ⊃ pAq),K ` K ′
�L

1. xΓy,K ′′ says A,K ′′ claims A
K−→ C (i.h. on premise)

2. xΓy,K ′′ says A
K−→ C (Rule (saysL))

Case.
Γ, pAq ∧ pBq, pAq,K ` K ′

Γ, pAq ∧ pBq,K ` K ′
∧ L1

1. xΓy, A ∧ B,A K−→ C (i.h. on premise)

2. xΓy, A ∧ B,A,B K−→ C (Weakening)

3. xΓy, A ∧ B K−→ C (Rule (∧L))

Case.
Γ, pAq ∧ pBq, pBq,K ` K ′

Γ, pAq ∧ pBq,K ` K ′
∧ L2

1. xΓy, A ∧ B,B K−→ C (i.h. on premise)

2. xΓy, A ∧ B,A,B K−→ C (Weakening)

3. xΓy, A ∧ B K−→ C (Rule (∧L))

Case.
Γ, pAq ∨ pBq, pAq,K ` K ′ Γ, pAq ∨ pBq, pBq,K ` K ′

Γ, pAq ∨ pBq,K ` K ′
∨L

1. xΓy, A ∨ B,A K−→ C (i.h. on 1st premise)

2. xΓy, A ∨ B,B K−→ C (i.h. on 2nd premise)

3. xΓy, A ∨ B K−→ C (Rule (∨L))

Case.
Γ,⊥,K ` K ′

⊥L

1. xΓy,⊥ K−→ C (Rule (⊥L))

Case.
Γ, pAq ⊃ pBq,K ` pAq Γ, pAq ⊃ pBq, pBq,K ` K ′

Γ, pAq ⊃ pBq,K ` K ′
⊃L

1. xΓy, A ⊃ B K−→ A (i.h. (2) on 1st premise)

2. xΓy, A ⊃ B,B K−→ C (i.h. on 2nd premise)

3. xΓy, A ⊃ B K−→ C (Rule (⊃L))

120

Case.
Γ,K ′′ ⊃ pBq,K ` K ′′ Γ,K ′′ ⊃ pBq, pBq,K ` K ′

Γ,K ′′ ⊃ pBq,K ` K ′
⊃L

We analyze two subcases:

Case. K = K ′′

1. xΓy,K ′′ claims B,B
K−→ C (i.h. on the 2nd premise)

2. xΓy,K ′′ claims B
K−→ C (Rule (claims); K = K ′′)

Case. K 6= K ′′

1. xΓy,K ′′ claims B
K−→ C (i.h. on 1st premise)

Proof of (2).

Case.
(A atomic)
Γ, A,K ` A

init

1. xΓy, A K−→ A (Rule (init))

Case.
�Γ ` K ′ ⊃ pAq

�Γ,Γ′,K ` �(K ′ ⊃ pAq)
�R

Let Γ = �(K1 ⊃ pA1q), . . . ,�(Kn ⊃ pAnq).

1. �Γ,K ′ ` pAq (Lemma I.12 on premise)

2. K1 says A1, . . . ,Kn says An
K′
−−→ A (i.h. on 1)

3. K1 claims A1, . . . ,Kn claims An
K′
−−→ A (Lemma I.13)

4. K1 claims A1, . . . ,Kn claims An, xΓ′y
K−→ K ′ says A (Rule (saysR))

5. K1 says A1, . . . ,Kn says An, xΓ′y
K−→ K ′ says A (Rule (saysL))

Case.
Γ,�(K ′ ⊃ pAq),K ′ ⊃ pAq,K ` pCq

Γ,�(K ′ ⊃ pAq),K ` pCq
�L

1. xΓy,K ′ says A,K ′ claims A
K−→ C (i.h. on premise)

2. xΓy,K ′ says A
K−→ C (Rule (saysL))

Case.
Γ,K ` pAq Γ,K ` pBq

Γ,K ` pAq ∧ pBq
∧R

1. xΓy K−→ A (i.h. on 1st premise)

2. xΓy K−→ B (i.h. on 2nd premise)

121

3. xΓy K−→ A ∧ B (Rule (∧R))

Case.
Γ, pAq ∧ pBq, pAq,K ` pCq

Γ, pAq ∧ pBq,K ` pCq
∧ L1

1. xΓy, A ∧ B,A K−→ C (i.h. on premise)

2. xΓy, A ∧ B,A,B K−→ C (Weakening)

3. xΓy, A ∧ B K−→ C (Rule (∧L))

Case.
Γ, pAq ∧ pBq, pBq,K ` pCq

Γ, pAq ∧ pBq,K ` pCq
∧ L2

1. xΓy, A ∧ B,B K−→ C (i.h. on premise)

2. xΓy, A ∧ B,A,B K−→ C (Weakening)

3. xΓy, A ∧ B K−→ C (Rule (∧L))

Case.
Γ,K ` pAq

Γ,K ` pAq ∨ pBq
∨ R1

1. xΓy K−→ A (i.h. on premise)

2. xΓy K−→ A ∨ B (Rule (∨ R1))

Case.
Γ,K ` pBq

Γ,K ` pAq ∨ pBq
∨ R2

1. xΓy K−→ B (i.h. on premise)

2. xΓy K−→ A ∨ B (Rule (∨ R2))

Case.
Γ, pAq ∨ pBq, pAq,K ` pCq Γ, pAq ∨ pBq, pBq,K ` pCq

Γ, pAq ∨ pBq,K ` pCq
∨L

1. xΓy, A ∨ B,A K−→ C (i.h. on 1st premise)

2. xΓy, A ∨ B,B K−→ C (i.h. on 2nd premise)

3. xΓy, A ∨ B K−→ C (Rule (∨L))

Case.
Γ,K ` >

>R

1. xΓy K−→ > (Rule (>R))

122

Case.
Γ,⊥,K ` pCq

⊥L

1. xΓy,⊥ K−→ C (Rule (⊥L))

Case.
Γ, pAq,K ` pBq

Γ,K ` pAq ⊃ pBq
⊃R

1. xΓy, A K−→ B (i.h. on premise)

2. xΓy K−→ A ⊃ B (Rule (⊃R))

Case.
Γ, pAq ⊃ pBq,K ` pAq Γ, pAq ⊃ pBq, pBq,K ` pCq

Γ, pAq ⊃ pBq,K ` pCq
⊃L

1. xΓy, A ⊃ B K−→ A (i.h. on 1st premise)

2. xΓy, A ⊃ B,B K−→ C (i.h. on 2nd premise)

3. xΓy, A ⊃ B K−→ C (Rule (⊃L))

Case.
Γ,K ′ ⊃ pAq,K ` K ′ Γ,K ′ ⊃ pAq, pAq,K ` pCq

Γ,K ′ ⊃ pAq,K ` pCq
⊃L

We analyze two subcases:

Case. K = K ′

1. xΓy,K ′ claims A,A
K−→ C (i.h. on 2nd premise)

2. xΓy,K ′ claims A
K−→ C (Rule (claims); K = K ′)

Case. K 6= K ′

1. xΓy,K ′ claims A
K−→ C (i.h. (1) on 1st premise)

Theorem I.19 (Correctness; Theorem 5.9). · K−→ A in BL0 if and only if ` K ⊃ pAq
in CS4.

Proof. Suppose · K−→ A in BL0. By Lemma I.14, K ` pAq. Hence by rule (⊃R),
· ` K ⊃ pAq.

Conversely, suppose · ` K ⊃ pAq in CS4. By Lemma I.12, K ` pAq. By
Lemma I.18.2, · K−→ A.

123

	Introduction
	The logic DTL0
	Structural Proof Theory
	Natural Deduction
	Meta-Theory of the Natural Deduction System
	Proof Terms
	Sequent Calculus
	Meta-Theory of the Sequent Calculus
	Equivalence

	Kripke Semantics for DTL0
	Canonical Kripke Model and Completeness

	Connections to Other Logics
	Connection to CS4
	Translation from an Authorization Logic with Lax Modalities
	Translation from an Authorization Logic with Weak Normal Modalities
	Translation from Soutei
	``Binder'' Logic and its Translation

	Related Work
	Conclusion
	References
	-reduction and -expansion
	Properties of the Sequent Calculus (Section 3.5)
	Proof of Equivalence from Section 3.6
	The Axiomatic System for DTL0
	Proof of Equivalence

	Proofs from Section 4
	Soundness
	Canonical Kripke Model and Completeness

	Proofs from Section 5.1
	The Axiomatic System for CS4m
	Proof of Soundness
	Proof of Completeness

	Proofs from Section 5.2
	Proof of Soundness
	Proof of Completeness

	Proofs from Section 5.3
	The Axiomatic System for IIK
	Proof of Soundness
	Proof of Completeness

	Proofs from Section 5.4
	Proof of Soundness
	Proof of Completeness

	Proofs from Section 5.5
	The Axiomatic System for BL0
	Proofs of Theorems 5.6 and 5.7
	Proof of Theorem 5.9

